LM124/LM224/LM324/LM2902
Low Power Quad Operational Amplifiers

General Description
The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard ±5 V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15 V power supplies.

Unique Characteristics
- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage
- The unity gain cross frequency is temperature compensated
- The input bias current is also temperature compensated

Advantages
- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and V_{OUT} also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features
- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range:
 - Single supply 3 V to 32 V
 - or dual supplies ±1.5 V to ±16 V
- Very low supply current drain (700 µA)—essentially independent of supply voltage
- Low input biasing current 45 nA
- (temperature compensated)
- Low input offset voltage 2 mV and offset current 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to V^a – 1.5 V

Connection Diagram

Top View
See NS Package Number J14A, M14A or N14A

*LM124A available per JM38510/11006
**LM124 available per JM38510/11005

©1995 National Semiconductor Corporation
TL/H9299–1

Order Number LM124AW/883 or LM124W/883
See NS Package Number W14B

Order Number LM124AE/883 or LM124E/883
See NS Package Number E20A

TL/H9299–32
TL/H9299–33
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 9)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V^+</td>
<td>32V</td>
<td>26V</td>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
<td>−65°C to +150°C</td>
<td></td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>32V</td>
<td>26V</td>
<td>Lead Temperature (Soldering, 10 seconds)</td>
<td>260°C</td>
<td>260°C</td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>−0.3V to +32V</td>
<td>−0.3V to +26V</td>
<td>Soldering Information</td>
<td>Dual-In-Line Package</td>
<td>260°C</td>
<td>260°C</td>
</tr>
<tr>
<td>Input Current (VIN < −0.3V)</td>
<td>50 mA</td>
<td>50 mA</td>
<td>Small Outline Package</td>
<td>Soldering (10 seconds)</td>
<td>215°C</td>
<td>215°C</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td></td>
<td></td>
<td></td>
<td>Small Outline Package</td>
<td>Infrared (15 seconds)</td>
<td>220°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESD Tolerance (Note 10)</td>
<td>250V</td>
<td>250V</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>Continuous</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM124A/LM224A</td>
<td>0°C to +70°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM224A/LM324A</td>
<td>−25°C to +85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM124/LM224A</td>
<td>−55°C to +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics

V^+ = +5.0V, (Note 4), unless otherwise stated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage (Note 5)</td>
<td>T_A = 25°C</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Input Bias Current (Note 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(IN+) or I(IN-), V_CM = 0V, T_A = 25°C</td>
<td>20</td>
<td>50</td>
<td>40</td>
<td>80</td>
<td>45</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(IN+) − I(IN-), V_CM = 0V, T_A = 25°C</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>15</td>
<td>5</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range (Note 7)</td>
<td>V_T^+ = 30V, (LM2902, V_T^+ = 26V), T_A = 25°C</td>
<td>0</td>
<td>V_T^+ − 1.5</td>
<td>0</td>
<td>V_T^+ − 1.5</td>
<td>0</td>
<td>V_T^+ − 1.5</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_L = ∞, On All Op Amps</td>
<td>V_T^+ = 30V (LM2902 V_T^+ = 26V)</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>V_T^+ = 5V</td>
<td>0.7</td>
<td>1.2</td>
<td>0.7</td>
<td>1.2</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V_T^+ = 15V, R_L ≥ 2kΩ, (V_O = 1V to 11V), T_A = 25°C</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>D_C, V_CM = 0V to V_T^+ = 1.5V, T_A = 25°C</td>
<td>70</td>
<td>85</td>
<td>70</td>
<td>85</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>V_T^+ = 5V to 30V, (LM2902, V_T^+ = 5V to 26V), T_A = 25°C</td>
<td>65</td>
<td>100</td>
<td>65</td>
<td>100</td>
<td>65</td>
<td>100</td>
</tr>
</tbody>
</table>
Electrical Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier-to-Amplifier Coupling (Note 8)</td>
<td>f = 1 kHz to 20 kHz, T_A = 25°C (Input Referred)</td>
<td>Min Typ Max</td>
<td>dB</td>
</tr>
<tr>
<td>Output Current Source</td>
<td>V^+ = 1V, V^- = 0V, V^+ = 15V, V^- = 2V, T_A = 25°C</td>
<td>20 40 20</td>
<td>40 20 40</td>
<td>20 40 20</td>
<td>40 20 40</td>
<td>20 40 20</td>
<td>40 20 40</td>
<td>mA</td>
</tr>
<tr>
<td>Sink</td>
<td>V^+ = 1V, V^- = 0V, V^+ = 15V, V^- = 2V, T_A = 25°C</td>
<td>10 20 10</td>
<td>20 10 20</td>
<td>10 20 10</td>
<td>20 10 20</td>
<td>10 20 10</td>
<td>20 20 10</td>
<td>μA</td>
</tr>
<tr>
<td>Short Circuit to Ground (Note 2) V^+= 15V, T_A = 25°C</td>
<td></td>
<td>40 60 40</td>
<td>60 40 60</td>
<td>40 60 40</td>
<td>60 40 60</td>
<td>40 60 40</td>
<td>60 60 40</td>
<td>mA</td>
</tr>
<tr>
<td>Input Offset Voltage (Note 5)</td>
<td></td>
<td>4 4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Input Offset Voltage Drift</td>
<td>R_S = 0Ω</td>
<td>7 20 7</td>
<td>20 7 20</td>
<td>7 30 7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>μV/°C</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{IN+} - I_{IN-}, V_{CM} = 0V</td>
<td>30 30 75</td>
<td>100 100 150</td>
<td>45 200 45</td>
<td>200 40 500</td>
<td>40 500 40</td>
<td>500 nA</td>
<td></td>
</tr>
<tr>
<td>Input Offset Current Drift</td>
<td>R_S = 0Ω</td>
<td>10 200 10</td>
<td>200 10 300</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>pA/°C</td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_{IN+} or I_{IN-}</td>
<td>40 100 40</td>
<td>100 40 200</td>
<td>40 200 40</td>
<td>200 40 500</td>
<td>40 500 40</td>
<td>500 nA</td>
<td></td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range (Note 7)</td>
<td>V^+ = +30V (LM2902, V^+ = 26V)</td>
<td>0 V^+ - 2</td>
<td>V</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V^+ = +15V (V_O Swing = 1V to 11V)</td>
<td>25 25 15</td>
<td>25 15 25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>V/mV</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V_{OH} = 30V (LM2902, V^+ = 26V)</td>
<td>26 26 26</td>
<td>26 26 26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>22</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>R_L = 2 kΩ</td>
<td>27 28 27</td>
<td>28 27 28</td>
<td>27 28 27</td>
<td>28 27 28</td>
<td>27 28 23</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>R_L = 10 kΩ</td>
<td>5 20 5</td>
<td>20 5 20</td>
<td>5 20 5</td>
<td>20</td>
<td>5 20</td>
<td>5 100</td>
<td>mV</td>
</tr>
</tbody>
</table>
Electrical Characteristics $V^+ = +5.0V$ (Note 4) unless otherwise stated (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Output Current</td>
<td>Source $V_O = 2V$</td>
<td>$V_{IN^+} = +1V, V_{IN^-} = 0V, V^+ = 15V$</td>
<td>10 20</td>
<td>10 20</td>
<td>10 20</td>
<td>10 20</td>
<td>10 20</td>
</tr>
<tr>
<td></td>
<td>Sink</td>
<td>$V_{IN^+} = +1V, V_{IN^-} = 0V, V^+ = 15V$</td>
<td>10 15</td>
<td>5 8</td>
<td>5 8</td>
<td>5 8</td>
<td>5 8</td>
</tr>
</tbody>
</table>

Note 1: For operating at high temperatures, the LM324/LM324A/LM2902 must be derated based on a $125^\circ C$ maximum junction temperature and a thermal resistance of $88^\circ C/W$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224/LM224A and LM124/LM124A can be derated based on a $+150^\circ C$ maximum junction temperature. The dissipation is the total of all four amplifiers—use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

Note 2: Short circuits from the output to V^+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V^+. At values of supply voltage in excess of $+15V$, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V^+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3V$ (at $25^\circ C$).

Note 4: These specifications are limited to $-55^\circ C \leq T_A \leq +125^\circ C$ for the LM124/LM124A. With the LM224/LM224A, all temperature specifications are limited to $-25^\circ C \leq T_A \leq +85^\circ C$, the LM324/LM324A temperature specifications are limited to $0^\circ C \leq T_A \leq +70^\circ C$, and the LM2902 specifications are limited to $-40^\circ C \leq T_A \leq +85^\circ C$.

Note 5: $V_O = 1.4V$, $R_0 = 0\Omega$ with V^+ from 5V to 30V, and over the full input common-mode range (5V to $V^+ - 1.5V$) for LM2902, V^+ from 5V to 26V.

Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 7: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at $25^\circ C$). The upper end of the common-mode voltage range is $V^+ - 1.5V$ (at $25^\circ C$), but either or both inputs can go to $-1.32V$ without damage ($-1.62V$ for LM2902), independent of the magnitude of V^+.

Note 8: Due to proximity of external components, insulate that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

Note 9: Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124 military specifications.

Note 10: Human body model, 1.5 kΩ in series with 100 pF.

Schematic Diagram (Each Amplifier)
Typical Performance Characteristics

Input Voltage Range

- Input Voltage Range vs. Supply Voltage
- V^0 or V^+ = Supply Voltage (Vcc)

Input Current

- Input Current vs. Supply Voltage
- $I^0 = 0$ Vcc
- $V^0 = 30$ Vcc
- $V^0 = 15$ Vcc
- $V^0 = 6$ Vcc

Supply Current

- Supply Current vs. Temperature
- $I_S = 0$°C to $+125$°C
- $T_A = -55$°C

Voltage Gain

- Voltage Gain vs. Supply Voltage
- $A_{VOL} = 100$ dB
- $R_L = 2K$Ω
- $R_1 = 2K$Ω

Open Loop Frequency Response

- Open Loop Frequency Response vs. Frequency
- $f = 0$ to 1 MHz

Common Mode Rejection Response

- Common Mode Rejection vs. Frequency
- $Q = 0$ dB

Voltage Follower Pulse Response

- Voltage Follower Pulse Response vs. Time
- $t = 20$ μs
- $t = 10$ μs

Voltage Follower Pulse Response (Small Signal)

- Voltage Follower Pulse Response (Small Signal) vs. Time
- $t = 20$ μs
- $t = 10$ μs

Current Limiting

- Current Limiting vs. Output Current
- $I^0 = 0$ A
- $I^0 = 10$ A
- $T_A = -55$°C to $+125$°C
Typical Performance Characteristics (LM2902 only)

Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 VDC. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 VDC.

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14). Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^- without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3\ V_{DC}$ (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion.

Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if large load capacitance must be driven by the amplifier.

The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 3 VDC to 30 VDC. Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $V^-/2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\)

Non-Inverting DC Gain (0V Input = 0V Output)

\[\text{Gain} = \frac{R_2}{R_1} = 10 \text{ (AS SHOWN)} \]

DC Summing Amplifier
\((V_{IN'S} = 0 \, V_{DC} \text{ and } V_O = V_{DC})\)

\[V_O = V_1 + V_2 - V_3 - V_4 \]
\((V_1 + V_2) > (V_3 + V_4) \text{ to keep } V_O > 0 \, V_{DC} \)

Power Amplifier
\((V_O = 0 \, V_{DC} \text{ for } V_{IN} = 0 \, V_{DC}, \, A_V = 10)\)

LED Driver

```
1/4 LM124A
```

"BI-QUAD" RC Active Bandpass Filter

\[f_o = 1 \, \text{kHz} \]
\[Q = 50 \]
\[A_V = 100 \text{ (40 dB)} \]
Typical Single-Supply Applications ($V^+ = 5.0 \, V_{DC}$) (Continued)

Fixed Current Sources

\[I_2 = \left(\frac{R1}{R2} \right) I_1 \]

Lamp Driver

Current Monitor

\[V_0 = \frac{1V(0)}{1A} \]

\[V_L \leq V^+ - 2V \]

(Increase R1 for I_L small)

Driving TTL

Voltage Follower

\[V_0 = V_{in} \]

Pulse Generator
Typical Single-Supply Applications ($V^+ - 5.0 \, V_{DC}$) (Continued)

Squarewave Oscillator

- $R_1 = 100k$
- $C = 0.001\mu F$
- $V^+ = 5.0 \, V_{DC}$

Pulse Generator

- $F_1 = 30k$
- $R_2 = 150k$
- $C = 0.01\mu F$

High Compliance Current Sink

- $I_0 = 1 \, \text{amp/volt} \, V_{IN}$
- (Increase R_E for I_0 small)

Low Drift Peak Detector

- HIGH Z_{IN}
- LOW Z_{OUT}

Comparator with Hysteresis

Ground Referencing a Differential Input Signal

- $V_O = V_R$
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\) (Continued)

Voltage Controlled Oscillator Circuit

![Voltage Controlled Oscillator Circuit Diagram]

*Wide control voltage range: \(0 \, V_{DC} \leq V_C \leq 2 \,(V^+ - 1.5 \, V_{DC})\)

Photo Voltic-Cell Amplifier

![Photo Voltic-Cell Amplifier Diagram]

AC Coupled Inverting Amplifier

![AC Coupled Inverting Amplifier Diagram]

\[A_v = \frac{R_1}{R_1} \] (As shown, \(A_v = 10\))
Typical Single-Supply Applications ($V^+ = 5.0 \text{ V}_{\text{DC}}$) (Continued)

AC Coupled Non-Inverting Amplifier

![AC Coupled Non-Inverting Amplifier Circuit](image1)

- $A_v = 1 + \frac{R_2}{R_1}$
- $A_v = 11$ (As shown)

DC Coupled Low-Pass RC Active Filter

![DC Coupled Low-Pass RC Active Filter Circuit](image2)

- $f_0 = 1 \text{ kHz}$
- $Q = 1$
- $A_v = 2$

High Input Z, DC Differential Amplifier

![High Input Z, DC Differential Amplifier Circuit](image3)

- $V_0 = 1 \frac{R_4}{R_3} (V_2 - V_1)$
- As shown: $V_0 = 2(V_2 - V_1)$
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\) (Continued)

High Input Z Adjustable-Gain
DC Instrumentation Amplifier

\[
\begin{align*}
&\text{If } R_1 = R_5 \text{ & } R_3 = R_4 = R_6 = R_7 \text{ (CMRR depends on match)} \\
&V_O = 1 + \frac{R_1}{R_2} (V_2 - V_1) \\
&\text{As shown } V_O = 101 (V_2 - V_1)
\end{align*}
\]

Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

Bridge Current Amplifier

\[
V_O = \frac{V_{REF} \left(\frac{A \cdot R_f}{2} \right)}{R}
\]

For \(A < 1 \) and \(R_f > R \)

\[
V_O = \frac{V_{REF} \left(\frac{A \cdot R_f}{2} \right)}{R}
\]
Typical Single-Supply Applications ($V^+ = 5.0 \text{V}_{	ext{DC}}$) (Continued)

Bandpass Active Filter

- $f_0 = 1 \text{kHz}$
- $Q > 25$

TL/H/9299–31
Physical Dimensions inches (millimeters)

Top View

Side View

Bottom View

Detail A

Leadless Chip Carrier Package
Order Number LM124AE/883 or LM124E/883
NS Package Number E20A

0.375 ± 0.008
(0.960 ± 0.020)

0.063 ± 0.015
(1.600 ± 0.381)

0.015 (0.381)
MIN TYP

0.002
(0.050)
MAX TYP

0.002
(0.050)
MIN TYP

0.002
(0.050)
MAX TYP

0.045 ± 0.005
(1.143 ± 0.127)

0.048 ± 0.010
(1.219 ± 0.254)

Ceramic Dual-In-Line Package (J)
NS Package Number J14A
Physical Dimensions inches (millimeters) (Continued)

S.O. Package (M)
Order Number LM324M, LM324AM or LM2902M
NS Package Number M14A

Molded Dual-In-Line Package (N)
Order Number LM324N, LM324AN or LM2902N
NS Package Number N14A
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.