FEATURES
• 250kHz SWITCHING
• FULL BRIDGE OUTPUT 16-80V (160V P-P)
• 10A OUTPUT
• FAULT PROTECTION
• SHUTDOWN CONTROL
• SYNCHRONIZABLE CLOCK
• HERMETIC PACKAGE

APPLICATIONS
• AIRCRAFT AUDIO AMPLIFIER
• BRUSH TYPE MOTOR CONTROL
• VIBRATION CANCELLING AMPLIFIER

DESCRIPTION
The SA02 amplifier is an 80 volt, 250kHz PWM amplifier. The full bridge output circuit provides 10 amps of continuous drive current for applications as diverse as aircraft audio and brush type motors. Clock output and input pins can be used for synchronization with other amplifiers or an externally generated clock. A separate integrator amplifier is also accessible and the integration may be varied for the application. Direct access to the pwm input is provided for connection to digital motion control circuits. Protection circuits guard against thermal overloads as well as shorts to supply or ground. The current limit is programmable with one or two external resistors depending on the application. A shutdown input disables all output bridge drivers. The 18 pin DIP7 steel package is hermetically sealed.

EXTERNAL CONNECTIONS

Case tied to pin 6. Bypassing of supplies is required. Package is Apex DIP7. See Outline Dimensions/Packages in Apex data book.

If +PWM > RAMP/~PWM then A OUT > B OUT and ISENSE B > ISENSE A.

* See text.

AIRCRAFT AUDIO
SA02

ABSOLUTE MAXIMUM RATINGS

SUPPLY VOLTAGE, Vcc to GND 15V
SUPPLY VOLTAGE, +Vcc to GND 80V
OUTPUT CURRENT, peak 15A
±PWM 0 TO Vcc
CLK IN, ±INT Vcc, ILIM/SHDN Vcc 0 to +6V
POWER DISSIPATION, internal 156W
TEMPERATURE, pin solder - 10s 300°C
TEMPERATURE, junction 150°C
TEMPERATURE, storage -65 to +150°C
OPERATING TEMPERATURE RANGE, case -55 to +125°C

SA02

The SA02 is constructed from MOSFET transistors. ESD handling procedures must be observed.

The internal substrate contains beryllia (BeO). Do not break the seal. If accidentally broken, do not crush, machine, or subject to temperatures in excess of 850°C to avoid generating toxic fumes.

CAUTION

NOTES:
1. 80W in each of the two active output transistors on at any one time.
2. Unless otherwise noted: Tc = 25°C.
3. Min max values guaranteed but not tested.
4. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF. For guidance, refer to the heatsink data sheet.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS2</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRATOR, CLOCK3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td>2</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>BIAS CURRENT</td>
<td></td>
<td></td>
<td>150</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>OFFSET CURRENT</td>
<td></td>
<td></td>
<td>30</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>COMMON MODE VOLTAGE RANGE</td>
<td></td>
<td></td>
<td>0</td>
<td>+3</td>
<td></td>
</tr>
<tr>
<td>COMMON MODE REJECTION, DC</td>
<td></td>
<td></td>
<td>80</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>SLEW RATE</td>
<td></td>
<td></td>
<td>15</td>
<td>V/µS</td>
<td></td>
</tr>
<tr>
<td>OPEN LOOP GAIN R_L = 10KΩ</td>
<td></td>
<td></td>
<td>94</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>GAIN BANDWIDTH PRODUCT</td>
<td></td>
<td></td>
<td>4.5</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>CLOCK OUT R_L ≥ 10KΩ</td>
<td></td>
<td></td>
<td>500</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>CLOCK OUT, high level</td>
<td></td>
<td></td>
<td>4.7</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>CLOCK OUT, low level</td>
<td></td>
<td></td>
<td>0</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>CLOCK IN, low level</td>
<td></td>
<td></td>
<td>0</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>CLOCK IN, high level</td>
<td></td>
<td></td>
<td>2</td>
<td>5.6</td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT

EFFICIENCY, 10A output	VS = 80V	94	%	
SWITCHING FREQUENCY			250	kHz
CURRENT, continuous			10	A
CURRENT, peak3			15	A
R_DISCHARGE3			.42	Ω

POWER SUPPLY

VOLTAGE, Vcc	Full temperature range	10	12	15	V
VOLTAGE, Vcc	Full temperature range	16	36	50	mA
CURRENT, Vcc = 12V	Switching, No Load, Vcc = 60V	70	90	mA	

INPUTS3

| I_LIM/SHDN, trip point | 90 | 110 | mV |
| ±PWM COMMON MODE VOLTAGE | 1 | Vcc – 1.5 | V |

THERMAL4

RESISTANCE, junction to case	Full temperature range	1.6	°C/W	
RESISTANCE, junction to air	Full temperature range	15	°C/W	
TEMPERATURE RANGE, case	Meets full range specifications		85	°C

NOTES:
1. 80W in each of the two active output transistors on at any one time.
2. Unless otherwise noted: Tc = 25°C.
3. Min max values guaranteed but not tested.
4. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF. For guidance, refer to the heatsink data sheet.

CAUTION

The SA02 is constructed from MOSFET transistors. ESD handling procedures must be observed.

The internal substrate contains beryllia (BeO). Do not break the seal. If accidentally broken, do not crush, machine, or subject to temperatures in excess of 850°C to avoid generating toxic fumes.
GENERAL

Helpful information about power supplies, heatsinking and mounting can be found in the “General Operating Considerations” section of the Apex data book. For information on the package outline, heatsinks, and mounting hardware see the “Package Outlines” and “Accessories” section of the data book. Also see Application Note 30 on “PWM Basics.”

CLOCK CIRCUIT AND RAMP GENERATOR

The clock frequency is internally set to a frequency of approximately 500 kHz. The CLK OUT pin will normally be tied to the CLK IN pin. The clock is divided by two and applied to an RC network which produces a ramp signal at the RAMP pin. An external clock signal can be applied to the CLK IN pin for synchronization purposes. If a clock frequency lower than 500kHz is chosen an external capacitor must be tied to the RAMP pin. This capacitor, which parallels an internal capacitor, must be selected so that the ramp oscillates 2.5 volts p-p with the lower peak 1.25 volts above ground.

BYPASSING

Adequate bypassing of the power supplies is required for proper operation. Failure to do so can cause erratic and low efficiency operation as well as excessive ringing at the outputs. The Vs supply should be bypassed with at least a 1µF ceramic capacitor in parallel with another low ESR capacitor of at least 10µF per amp of output current. Capacitor types rated for switching applications are the only types that should be considered. The bypass capacitors must be physically connected directly to the power supply pins. Even one inch of lead length will cause excessive ringing at the outputs. This is due to the very fast switching times and the inductance of the lead connection. The bypassing requirements of the Vcc supply are less stringent, but still necessary. A .1µF to .47µF ceramic capacitor connected directly to the Vcc pin will suffice.

NOISE FILTERING

Switching noise can enter the SA02 through the INT OUT to +PWM connection. A wise precaution is to low pass filter this connection. Adjust the pass band of the filter to 10 times the bandwidth required by the application. Keep the resistor value to 100 ohms or less since this resistor becomes part of the hysteresis circuit on the pwm comparator.

PCB LAYOUT

The designer needs to appreciate that the SA02 combines in one circuit both high speed high power switching and low level analog signals. Certain layout rules of thumb must be considered when a circuit board layout is designed using the SA02:

1. Bypassing of the power supplies is critical. Capacitors must be connected directly to the power supply pins with very short lead lengths (well under 1 inch). Ceramic chip capacitors are best.
2. Make all ground connections with a star pattern at pin 6.
3. Beware of capacitive coupling between output connections and signal inputs through the parasitic capacitance between layers in multilayer PCB designs.
4. Do not run small signal traces between the pins of the output section (pins 11-17).
5. Do not allow high currents to flow into the ground plane.
6. Separate switching and analog grounds and connect the two only at pin 6 as part of the star pattern.

INTEGRATOR

The integrator provides the inverted signal for negative feedback and also the open loop gain for the overall application circuit accuracy. Recommended value of C INT is 10 pF for stability. However, poles and zeroes can be added to the circuit for overall loop stability as required.

CURRENT LIMIT

There are two load current sensing pins, I SENSE A and I SENSE B. The two pins can be shorted in the voltage mode connection but both must be used in the current mode connection (see figures A and B). It is recommended that R LIMIT resistors be non-inductive. Load current flows in the I SENSE pins. To avoid errors due to lead lengths connect the I LIMIT/ SHDN pin directly to the R LIMIT resistors (through the filter network and shutdown divider resistor) and connect the R LIMIT resistors directly to the GND pin.
Switching noise spikes will invariably be found at the I SENSE pins. The noise spikes could trip the current limit threshold which is only 100 mV. R FILTER and C FILTER should be adjusted so as to reduce the switching noise well below 100 mV to prevent false current limiting. The sum of the DC level plus the noise peak will determine the current limiting value. As in most switching circuits it may be difficult to determine the true noise amplitude without careful attention to grounding of the oscilloscope probe. Use the shortest possible ground lead for the probe and connect exactly at the GND terminal of the amplifier. Suggested starting values are C FILTER = .001uF, R FILTER = 5k.

The required value of R LIMIT in voltage mode may be calculated by:
\[
R_{\text{LIMIT}} = \frac{0.1}{I_{\text{LIMIT}}}
\]

where R LIMIT is the required resistor value, and I LIMIT is the maximum desired current. In current mode the required value of each R LIMIT is 2 times this value since the sense voltage is divided down by 2 (see Figure B). If R SHDN is used it will further divide down the sense voltage. The shutdown divider network will also have an effect on the filtering circuit.

SHUTDOWN

The shutdown circuitry makes use of the internal current limiting circuitry. The two functions may be externally combined in voltage and current modes as shown below in Figures A and B. The R LIMIT resistors will normally be very low values and can be considered zero for this application. In Figure A, R SHDN and 1K form a voltage divider for the shutdown signal. After a suitable noise filter is designed for the current limit, adjust the value of R SHDN to give a minimum 110 mV of shutdown signal at the I LIMIT/SHDN pin when the shutdown signal is high. Note that C FILTER will filter both the current limit noise spikes and the shutdown signal. Shutdown and current limit operate on each cycle of the internal switching rate. As long as the shutdown signal is high the output will be disabled.

PROTECTION CIRCUITS

Circuits monitor the temperature and load on each of the bridge output transistors. On each cycle should any fault condition be detected all output transistors in the bridge are shut off. Faults protected against are: shorts across the outputs, shorts to ground, and over temperature conditions. Should any of these faults be detected, the output transistors will be latched off. The fault must be removed and VCC power recycled to restart the SA02. In addition there is a built in dead time during which all the output transistors are off. The dead time removes the possibility of a momentary conduction path through the upper and lower transistors of each half bridge during the switching interval. Noise or flyback may be observed at the outputs during this time due to the high impedance of the outputs in the off state. This will vary with the nature of the load.