Devices Included in this Data Sheet

- PIC16C83
- PIC16CR83
- PIC16C84
- PIC16C84A
- PIC16CR84
- Extended voltage range devices available (PIC16LC8X)

High Performance RISC CPU Features

- Only 35 single word instructions to learn
- All instructions single cycle (400 ns @ 10 MHz) except for program branches which are two-cycle
- Operating speed: DC - 10 MHz clock input
 DC - 400 ns instruction cycle

<table>
<thead>
<tr>
<th>Device</th>
<th>Memory</th>
<th>Freq</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAM</td>
<td>EEPROM</td>
</tr>
<tr>
<td>PIC16C83</td>
<td>512 words</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>PIC16CR83</td>
<td>512 words†</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>PIC16C84</td>
<td>1 K-words</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>PIC16C84A</td>
<td>1 K-words</td>
<td>68</td>
<td>64</td>
</tr>
<tr>
<td>PIC16CR84</td>
<td>1 K-words†</td>
<td>68</td>
<td>64</td>
</tr>
</tbody>
</table>

† ROM Program Memory Devices

- 14-bit wide instructions
- 8-bit wide data path
- 15 special function hardware registers
- Eight-level deep hardware stack
- Direct, indirect and relative addressing modes
- Four interrupt sources:
 - External RB0/INT pin
 - TMRO timer overflow
 - PORTB<7:4> interrupt on change
 - Data EEPROM write complete
- 1,000,000 data memory EEPROM ERASE/WRITE cycles - Typical
- EEPROM Data Retention > 40 years

Peripheral Features

- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
 - 25 mA sink max. per pin
 - 20 mA source max. per pin
- TMRO: 8-bit timer/counter with 8-bit programmable prescaler

Pin Diagram

Special Microcontroller Features

- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Code-protection
- Power saving SLEEP mode
- Selectable oscillator options
- Serial In-System Programming - via two pins (ROM devices support only Data EEPROM programming)

CMOS Technology

- Low-power, high-speed CMOS EEPROM technology
- Fully static design
- Wide operating voltage range:
 - Commercial: 2.0V to 6.0V
 - Industrial: 2.0V to 6.0V
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 15 µA typical @ 2V, 32 kHz
 - < 1 µA typical standby current @ 2V (all devices except PIC16C84)
Table of Contents

1.0 General Description .. 3
2.0 PIC16C8X Device Varieties .. 5
3.0 Architectural Overview .. 7
4.0 Memory Organization ... 11
5.0 I/O Ports .. 21
6.0 Timer0 Module and TMR0 Register .. 27
7.0 Data EEPROM Memory ... 33
8.0 Special Features of the CPU .. 37
9.0 Instruction Set Summary .. 53
10.0 Development Support ... 65
11.0 Electrical Characteristics for PIC16C84 .. 71
12.0 DC & AC Characteristics Graphs/Tables for PIC16C84 ... 81
13.0 Electrical Characteristics for PIC16C83, PIC16CR83, PIC16C84A and PIC16CR84 .. 95
15.0 Packaging Information .. 109
Appendix A: Changes ... 113
Appendix B: Compatibility ... 113
Appendix C: What’s New ... 114
Appendix D: What’s Changed ... 114
Appendix E: PIC16C84 Conversion Considerations ... 115
Appendix F: PIC16/17 Microcontrollers .. 117
Index .. 125
Connecting to Microchip BBS .. 129
Reader Response .. 130

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed.
1.0 GENERAL DESCRIPTION

The PIC16C8X is a group in the PIC16CXX family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers. This group contains the following devices:

- PIC16C83
- PIC16CR83
- PIC16C84
- PIC16C84A
- PIC16CR84

All PIC16/17 microcontrollers employ an advanced RISC architecture. PIC16CXX devices have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with a separate 8-bit wide data bus. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C8X microcontrollers typically achieve a 2:1 code compression and up to a 2:1 speed improvement (at 10 MHz) over other 8-bit microcontrollers in their class.

The PIC16C8X has up to 68 bytes of RAM, 64 bytes of Data EEPROM memory, and 13 I/O pins. A timer/counter is also available.

The PIC16CXX family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers power saving. The user can wake the chip from sleep through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

The devices with EEPROM program memory allows the same device package to be used for prototyping and production. In-circuit reprogrammability allows the code to be updated without the device being removed from the end application. This is useful in the development of many applications where the device may not be easily accessible, but the prototypes may require code updates. This is also useful for remote applications where the code may need to be updated (such as rate information).

Table 1-1 lists the features of the PIC16C8X, and Appendix F: list the features of all of the Microchip microcontrollers.

A simplified block diagram of the PIC16C8X is shown in Figure 3-1.

The PIC16C8X fits perfectly in applications ranging from high speed automotive and appliance motor control to low-power remote sensors, electronic locks, security devices and smart cards. The EEPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, security codes, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease of use and I/O flexibility make the PIC16C8X very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, serial communication, capture and compare, PWM functions and co-processor applications).

The serial in-system programming feature (via two pins) offers flexibility of customizing the product after complete assembly and testing. This feature can be used to serialize a product, store calibration data, or program the device with the current firmware before shipping.

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to the PIC16C8X (Appendix B).

1.2 Development Support

The PIC16CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler and fuzzy logic support tools are also available.
TABLE 1-1: PIC16C8X FAMILIES OF DEVICES

<table>
<thead>
<tr>
<th></th>
<th>Clock</th>
<th>Memory</th>
<th>Peripherals</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min. Frequency (MHz)</td>
<td>ROM</td>
<td>Program Memory (bytes)</td>
<td>Data Memory (bytes)</td>
</tr>
<tr>
<td>PIC16C83((1))</td>
<td>10</td>
<td>512</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>PIC16CR83((1))</td>
<td>10</td>
<td>—</td>
<td>512</td>
<td>36</td>
</tr>
<tr>
<td>PIC16C84</td>
<td>10</td>
<td>1K</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>PIC16C84A((1))</td>
<td>10</td>
<td>1K</td>
<td>—</td>
<td>68</td>
</tr>
<tr>
<td>PIC16CR84((1))</td>
<td>10</td>
<td>—</td>
<td>1K</td>
<td>68</td>
</tr>
</tbody>
</table>

Notes:
- All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect, and high I/O current capability.
- All PIC16CXX family devices use serial programming with clock pin RB6 and data pin RB7.
- Please contact your local sales office for availability of these devices.
2.0 PIC16C8X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements the proper device option can be selected using the information in this section. When placing orders, please use the “PIC16C8X Product Identification System” at the back of this data sheet to specify the correct part number.

There are four device “types” as indicated in the device number.

1. **C**, as in PIC16C84. These devices have EEPROM program memory and operate over the standard voltage range.

2. **LC**, as in PIC16LC84. These devices have EEPROM program memory and operate over an extended voltage range.

3. **CR**, as in PIC16CR83. These devices have ROM program memory and operate over the standard voltage range.

4. **LCR**, as in PIC16LCR84. These devices have ROM program memory and operate over an extended voltage range.

When discussing memory maps and other architectural features, the use of **C** (**CR**) also implies the **LC** (**LCR**) versions.

2.1 Electrically Erasable Devices

These devices are offered in the lower cost plastic package, even though the device can be erased and reprogrammed. This allows the same device to be used for prototype development and pilot programs as well as production.

A further advantage of the electrically erasable version is that they can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART™ or PRO MATE™ programmers.

2.2 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices have all EEPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available.

For information on submitting a QTP code, please contact your Microchip Regional Sales Office.

2.3 Serialized Quick-Turnaround-Production (SQTP) Devices

Microchip offers the unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

For information on submitting a SQTP code, please contact your Microchip Regional Sales Office.

2.4 ROM Devices

Some of Microchip’s devices have a corresponding device where the program memory is a ROM. These devices give a cost savings over Microchip’s traditional user programmed devices (EPROM, EEPROM).

ROM devices (PIC16CR8X) do not allow serialization information in the program memory space. The user may program this information into the Data EEPROM.

For information on submitting a ROM code, please contact your Microchip Regional Sales Office.
3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture. This architecture has the program and data are accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC16C8X opcodes are 14-bits wide, enabling single word instructions. The full 14-bit wide program memory bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (400 ns @ 10 MHz) except for program branches.

The PIC16C83 and PIC16CR83 address 512 x 14 of program memory, and the PIC16C84, PIC16C84A, and PIC16CR84 address 1K x 14 program memory. All program memory is internal.

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. An orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), and the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram for the PIC16C8X is shown in Figure 3-1, its corresponding pin description is shown in Table 3-1.
FIGURE 3-1: PIC16C8X BLOCK DIAGRAM

- EEPROM/ROM Program Memory:
 - PIC16C83/R83: 512 x 14
 - PIC16C84/84A/R84: 1K x 14

- Program Bus 14
 - Instruction reg
 - 8 Level Stack (13-bit)

- Program Counter
 - Data Bus 8
 - RAM File Registers:
 - PIC16C83/R83/84: 36 x 8
 - PIC16C84A/R84: 68 x 8

- RAM Addr
 - Addr Mux
 - Direct Addr
 - Indirect Addr

- OSC2/CLKOUT
 - OSC1/CLKIN
 - MCLR
 - Vdd, Vss

- Power-up Timer
 - Oscillator
 - Start-up Timer
 - Power-on Reset
 - Watchdog Timer

- TIM0
 - EEDATA
 - EEPROM Data Memory
 - 64 x 8

- I/O Ports
 - RA0/RA3
 - RB0/RB7
 - RB0/INT
TABLE 3-1: PIC16C8X PINOUT DESCRIPTION

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>DIP No.</th>
<th>SOIC No.</th>
<th>I/O/P Type</th>
<th>Buffer Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC1/CLKIN</td>
<td>16</td>
<td>16</td>
<td>I</td>
<td>ST/CMOS (3)</td>
<td>Oscillator crystal input/external clock source input.</td>
</tr>
<tr>
<td>OSC2/CLKOUT</td>
<td>15</td>
<td>15</td>
<td>O</td>
<td>—</td>
<td>Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.</td>
</tr>
<tr>
<td>MCLR</td>
<td>4</td>
<td>4</td>
<td>I/P</td>
<td>ST</td>
<td>Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.</td>
</tr>
<tr>
<td>RA0</td>
<td>17</td>
<td>17</td>
<td>I/O</td>
<td>TTL</td>
<td>PORTA is a bi-directional I/O port.</td>
</tr>
<tr>
<td>RA1</td>
<td>18</td>
<td>18</td>
<td>I/O</td>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>RA2</td>
<td>1</td>
<td>1</td>
<td>I/O</td>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>RA3</td>
<td>2</td>
<td>2</td>
<td>I/O</td>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>RA4/T0CKI</td>
<td>3</td>
<td>3</td>
<td>I/O</td>
<td>ST</td>
<td>Can also be selected to be the clock input to the TMR0 timer/counter. Output is open drain type.</td>
</tr>
<tr>
<td>RB0/INT</td>
<td>6</td>
<td>6</td>
<td>I/O</td>
<td>TTL/ST (1)</td>
<td>PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.</td>
</tr>
<tr>
<td>RB1</td>
<td>7</td>
<td>7</td>
<td>I/O</td>
<td>TTL</td>
<td>RB0/INT can also be selected as an external interrupt pin.</td>
</tr>
<tr>
<td>RB2</td>
<td>8</td>
<td>8</td>
<td>I/O</td>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>RB3</td>
<td>9</td>
<td>9</td>
<td>I/O</td>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>RB4</td>
<td>10</td>
<td>10</td>
<td>I/O</td>
<td>TTL</td>
<td>Interrupt on change pin.</td>
</tr>
<tr>
<td>RB5</td>
<td>11</td>
<td>11</td>
<td>I/O</td>
<td>TTL</td>
<td>Interrupt on change pin.</td>
</tr>
<tr>
<td>RB6</td>
<td>12</td>
<td>12</td>
<td>I/O</td>
<td>TTL/ST (2)</td>
<td>Interrupt on change pin. Serial programming clock.</td>
</tr>
<tr>
<td>RB7</td>
<td>13</td>
<td>13</td>
<td>I/O</td>
<td>TTL/ST (2)</td>
<td>Interrupt on change pin. Serial programming data.</td>
</tr>
<tr>
<td>Vss</td>
<td>5</td>
<td>5</td>
<td>P</td>
<td>—</td>
<td>Ground reference for logic and I/O pins.</td>
</tr>
<tr>
<td>Vdd</td>
<td>14</td>
<td>14</td>
<td>P</td>
<td>—</td>
<td>Positive supply for logic and I/O pins.</td>
</tr>
</tbody>
</table>

Legend:
I = input
O = output
I/O = Input/Output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input

Note:
1: This buffer is a Schmitt Trigger input when configured as the external interrupt (except PIC16C84, which remains TTL).
2: This buffer is a Schmitt Trigger input when used in serial programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An “Instruction Cycle” consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the “Instruction Register” in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

1. MOVLW 55h
2. MOVWF PORTB
3. CALL SUB_1
4. BSF PORTA, BIT3

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.
4.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16C8X. These are the program memory and the data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the “core” are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory, but is indirectly mapped. That is an indirect address pointer specifies the address of the data EEPROM memory to read/write. The 64 bytes of data EEPROM memory have the address range 0h-3Fh. More details on the EEPROM memory can be found in Section 7.0.

4.1 Program Memory Organization

The PIC16CXX has a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16C83 and PIC16CR83 only the first 512 x 14 (0000h-01FFh) are physically implemented, and for the PIC16C84, PIC16C84A, and PIC16CR84 only the first 1K x 14 (0000h-03FFh) are physically implemented. Accessing a location above the physically implemented address will cause a wraparound. For example, for the PIC16C84 locations 20h, 420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h will be the same instruction.

The reset vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1).
4.2 Data Memory Organization

The data memory is partitioned into two areas. The first is the Special Function Registers (SFR) area, while the second is the General Purpose Registers (GPR) area. The SFRs control the operation of the device.

 Portions of data memory are banked. This is for both the SFR area and the GPR area. The GPR area is banked to allow greater than 116 bytes of general purpose RAM. The banked areas of the SFRs are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the STATUS Register. Figure 4-2 shows the data memory map organization.

Instructions MOVWF and MOVF can move values from the W register to any location in the register file ("F"), and vice-versa.

The entire data memory can be accessed either directly using the absolute address of each register file or indirectly through the File Select Register (FSR) (Section 4.4). Indirect addressing uses the present value of the RP1:RP0 bits for access into the banked areas of data memory.

Data memory is partitioned into two banks which contain the general purpose registers and the special function registers. Bank 0 is selected by clearing the RP0 bit (STATUS<5>). Setting the RP0 bit selects Bank 1. Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. (Figure 4-2)

4.2.1 GENERAL PURPOSE REGISTER FILE

All devices have some amount of General Purpose Register (GPR) area. Each GPR is 8-bits wide and is accessed either directly, or indirectly through the FSR (Section 4.4).

Architecturally, the GPR area starts at address 0Ch for bank 0 and 8Ch for bank 1. When more than 116 bytes of GPR are present on the device, banking must be performed to access the additional memory space.

PIC16C8X devices have up to 68 bytes of GPR memory, and therefore do not require banking of the GPR memory. Any access to Bank 1 will cause the access to occur in Bank 0. That is, the MSb of the 8-bit direct address will be ignored.

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (Figure 4-2 and Table 4-1) are used by the CPU and Peripheral functions to control the device operation. These registers are static RAM.

The special function registers can be classified into two sets, core and peripheral. Those associated with the “core” functions are described in this section. Those related to the operation of the peripheral features are described in the section for that specific feature.

FIGURE 4-2: REGISTER FILE MAP

<table>
<thead>
<tr>
<th>File Address</th>
<th>File Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>00h</td>
</tr>
<tr>
<td>01h</td>
<td>01h</td>
</tr>
<tr>
<td>02h</td>
<td>02h</td>
</tr>
<tr>
<td>03h</td>
<td>03h</td>
</tr>
<tr>
<td>04h</td>
<td>04h</td>
</tr>
<tr>
<td>05h</td>
<td>05h</td>
</tr>
<tr>
<td>06h</td>
<td>06h</td>
</tr>
<tr>
<td>07h</td>
<td>07h</td>
</tr>
<tr>
<td>08h</td>
<td>08h</td>
</tr>
<tr>
<td>09h</td>
<td>09h</td>
</tr>
<tr>
<td>0Ah</td>
<td>0Ah</td>
</tr>
<tr>
<td>0Bh</td>
<td>0Bh</td>
</tr>
<tr>
<td>0Ch</td>
<td>0Ch</td>
</tr>
<tr>
<td>2Fh (2)</td>
<td>2Fh (2)</td>
</tr>
<tr>
<td>30h (2)</td>
<td>30h (2)</td>
</tr>
<tr>
<td>4Fh (2)</td>
<td>4Fh (2)</td>
</tr>
<tr>
<td>50h (2)</td>
<td>50h (2)</td>
</tr>
<tr>
<td>7Fh</td>
<td>7Fh</td>
</tr>
</tbody>
</table>

Unimplemented data memory location; read as ‘0’.

Note 1: Not a physical register.
2: The address depends on the device used.
Devices with 36 bytes end at 2Fh, devices with 68 bytes end at 4Fh.
TABLE 4-1: REGISTER FILE SUMMARY

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on Power-on Reset</th>
<th>Value on all other resets (Note3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 0</td>
<td></td>
</tr>
<tr>
<td>00h</td>
<td>INDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Uses contents of FSR to address data memory (not a physical register)</td>
<td>---- ---- ---- ---- ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>01h</td>
<td>TMR0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8-bit real-time clock/counter</td>
<td>xxxx xxxx uuuu uuuu</td>
</tr>
<tr>
<td>02h</td>
<td>PCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low order 8 bits of the Program Counter (PC)</td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td>03h</td>
<td>STATUS (2)</td>
<td>IRP</td>
<td>RP1</td>
<td>RP0</td>
<td>TO</td>
<td>PD</td>
<td>Z</td>
<td>DC</td>
<td>C</td>
<td>0011 1xxx 000q quuu</td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td>04h</td>
<td>FSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indirect data memory address pointer 0</td>
<td>xxxx xuuu xuuu xuuu</td>
</tr>
<tr>
<td>05h</td>
<td>PORTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RA4/T0CKI RA3 RA2 RA1 RA0</td>
<td>---- xuuu ---- u uuuu</td>
</tr>
<tr>
<td>06h</td>
<td>PORTB</td>
<td>RB7</td>
<td>RB6</td>
<td>RB5</td>
<td>RB4</td>
<td>RB3</td>
<td>RB2</td>
<td>RB1</td>
<td>RB0/INT</td>
<td>xuuu xuuu xuuu xuuu</td>
<td></td>
</tr>
<tr>
<td>07h</td>
<td>Unimplemented location, read as '0'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>------ ------ ------ ------</td>
<td></td>
</tr>
<tr>
<td>08h</td>
<td>EEDATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EEPROM data register</td>
<td>xuuu xuuu xuuu xuuu</td>
</tr>
<tr>
<td>09h</td>
<td>EEADR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EEPROM address register</td>
<td>xuuu xuuu xuuu xuuu</td>
</tr>
<tr>
<td>0Ah</td>
<td>PCLATH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Write buffer for upper 5 bits of the PC (1)</td>
<td>---- 0 0000 ---- 0 0000</td>
</tr>
<tr>
<td>0Bh</td>
<td>INTCON</td>
<td>GIE</td>
<td>EEIE</td>
<td>T0IE</td>
<td>INTE</td>
<td>RBIE</td>
<td>T0IF</td>
<td>INTF</td>
<td>RBIF</td>
<td>0000 000x 0000 0000u</td>
<td></td>
</tr>
<tr>
<td>Bank 1</td>
<td></td>
</tr>
<tr>
<td>08h</td>
<td>INDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Uses contents of FSR to address data memory (not a physical register)</td>
<td>---- ---- ---- ---- ---- ---- ---- ---- ---- ----</td>
</tr>
<tr>
<td>09h</td>
<td>OPTION</td>
<td>RBPU</td>
<td>INTEDG</td>
<td>T0CS</td>
<td>T0SE</td>
<td>PSA</td>
<td>PS2</td>
<td>PS1</td>
<td>PS0</td>
<td>1111 1111 1111 1111</td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td>0Ah</td>
<td>STATUS (2)</td>
<td>IRP</td>
<td>RP1</td>
<td>RP0</td>
<td>TO</td>
<td>PD</td>
<td>Z</td>
<td>DC</td>
<td>C</td>
<td>0001 1xxx 000q quuu</td>
<td>0000 0000 0000 0000</td>
</tr>
<tr>
<td>0Bh</td>
<td>TRISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PORTA data direction register</td>
<td>---- 1 1111 ---- 1 1111</td>
</tr>
<tr>
<td>0Ch</td>
<td>TRISB</td>
<td>PORTB</td>
<td>data direction register</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1111 1111 1111 1111</td>
<td></td>
</tr>
<tr>
<td>07h</td>
<td>Unimplemented location, read as '0'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>------ ------ ------ ------</td>
<td></td>
</tr>
<tr>
<td>08h</td>
<td>EECON1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EEIF WRERR WREN WR RD</td>
<td>---- 0 x000 ---- 0 q000</td>
</tr>
<tr>
<td>09h</td>
<td>EECON2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EEPROM control register 2 (not a physical register)</td>
<td>------ ------ ------ ------</td>
</tr>
<tr>
<td>0Ah</td>
<td>PCLATH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Write buffer for upper 5 bits of the PC (1)</td>
<td>---- 0 0000 ---- 0 0000</td>
</tr>
<tr>
<td>0Bh</td>
<td>INTCON</td>
<td>GIE</td>
<td>EEIE</td>
<td>T0IE</td>
<td>INTE</td>
<td>RBIE</td>
<td>T0IF</td>
<td>INTF</td>
<td>RBIF</td>
<td>0000 000x 0000 0000u</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- x = unknown,
- u = unchanged,
- - = unimplemented read as '0',
- q = value depends on condition.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> is never transferred to PCLATH.

Note 2: The TO and PD status bits in the STATUS register are not affected by a MCLR reset.

Note 3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.
4.2.2.1 STATUS REGISTER

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bit for data memory.

As with any register, the STATUS register can be the destination for any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uuu (where u = unchanged).

Only the BCF, BSF, SWAPF and MOVWF instructions should be used to alter the STATUS register (Table 9-2) because these instructions do not affect any status bit.

<table>
<thead>
<tr>
<th>Note 1:</th>
<th>The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C8X and should be programmed as cleared. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note 2:</td>
<td>The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.</td>
</tr>
<tr>
<td>Note 3:</td>
<td>When the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. The specified bit(s) will be updated according to device logic.</td>
</tr>
</tbody>
</table>

Note: Use of the IRP and RP1 bits (STATUS<7:6>) is not recommended, since this may affect upward compatibility with future products.
FIGURE 4-3: STATUS REGISTER (ADDRESS 03h, 83h)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R-1</th>
<th>R-1</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
<th>R/W-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP</td>
<td>RP1</td>
<td>RP0</td>
<td>TO</td>
<td>PD</td>
<td>Z</td>
<td>DC</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

bit7: **IRP**: Register Bank Select bit (used for indirect addressing)
0 = Bank 0, 1 (00h - FFh)
1 = Bank 2, 3 (100h - 1FFh)
The IRP bit is not used by the PIC16C8X. IRP should be maintained clear.

bit 6-5: **RP1:RP0**: Register Bank Select bits (used for direct addressing)
00 = Bank 0 (00h - 7Fh)
01 = Bank 1 (80h - FFh)
10 = Bank 2 (100h - 17Fh)
11 = Bank 3 (180h - 1FFh)
Each bank is 128 bytes. Only bit RP0 is used by the PIC16C8X. RP1 should be maintained clear.

bit 4: **TO**: Time-out bit
1 = After power-up, CLRWDT instruction, or SLEEP instruction
0 = A WDT time-out occurred

bit 3: **PD**: Power-down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction

bit 2: **Z**: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero

bit 1: **DC**: Digit carry/borrow bit (for ADDWF and ADDLW instructions) (For borrow the polarity is reversed)
1 = A carry-out from the 4th low order bit of the result occurred
0 = No carry-out from the 4th low order bit of the result

bit 0: **C**: Carry/borrow bit (for ADDWF and ADDLW instructions)
1 = A carry-out from the most significant bit of the result occurred
0 = No carry-out from the most significant bit of the result occurred

Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.
4.2.2.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note: When the prescaler is assigned to the WDT (PSA = '1'), TMR0 has a 1:1 prescaler assignment.

FIGURE 4-4: OPTION REGISTER (ADDRESS 81h)

<table>
<thead>
<tr>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBPU</td>
<td>INTEDG</td>
<td>T0CS</td>
<td>T0SE</td>
<td>PSA</td>
<td>PS2</td>
<td>PS1</td>
<td>PS0</td>
</tr>
</tbody>
</table>

- **RBPU**: PORTB Pull-up Enable bit
 - 1 = PORTB pull-ups are disabled
 - 0 = PORTB pull-ups are enabled (by individual port latch values)

- **INTEDG**: Interrupt Edge Select bit
 - 1 = Interrupt on rising edge of RB0/INT pin
 - 0 = Interrupt on falling edge of RB0/INT pin

- **T0CS**: TMR0 Clock Source Select bit
 - 1 = Transition on RA4/T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)

- **T0SE**: TMR0 Source Edge Select bit
 - 1 = Increment on high-to-low transition on RA4/T0CKI pin
 - 0 = Increment on low-to-high transition on RA4/T0CKI pin

- **PSA**: Prescaler Assignment bit
 - 1 = Prescaler assigned to the WDT
 - 0 = Prescaler assigned to TMR0

- **PS2:PS0**: Prescaler Rate Select bits

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>TMR0 Rate</th>
<th>WDT Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1:2</td>
<td>1:1</td>
</tr>
<tr>
<td>001</td>
<td>1:4</td>
<td>1:2</td>
</tr>
<tr>
<td>010</td>
<td>1:8</td>
<td>1:4</td>
</tr>
<tr>
<td>011</td>
<td>1:16</td>
<td>1:8</td>
</tr>
<tr>
<td>100</td>
<td>1:32</td>
<td>1:16</td>
</tr>
<tr>
<td>101</td>
<td>1:64</td>
<td>1:32</td>
</tr>
<tr>
<td>110</td>
<td>1:128</td>
<td>1:64</td>
</tr>
<tr>
<td>111</td>
<td>1:256</td>
<td>1:128</td>
</tr>
</tbody>
</table>
4.2.2.3 INTCON REGISTER

The INTCON register is a readable and writable register which contains the various enable bits for all interrupt sources.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIE</td>
<td>EEIE</td>
<td>T0IE</td>
<td>INTE</td>
<td>RBIE</td>
<td>T0IF</td>
<td>INTF</td>
<td>RBIF</td>
</tr>
</tbody>
</table>

bit7: **GIE:** Global Interrupt Enable bit
- 1 = Enables all un-masked interrupts
- 0 = Disables all interrupts

Note: For the operation of the interrupt structure, please refer to Section 8.5.

bit 6: **EEIE:** EE Write Complete Interrupt Enable bit
- 1 = Enables the EE write complete interrupt
- 0 = Disables the EE write complete interrupt

bit 5: **T0IE:** TMR0 Overflow Interrupt Enable bit
- 1 = Enables the TMR0 interrupt
- 0 = Disables the TMR0 interrupt

bit 4: **INTE:** RB0/INT Interrupt Enable bit
- 1 = Enables the RB0/INT interrupt
- 0 = Disables the RB0/INT interrupt

bit 3: **RBIE:** RB Port Change Interrupt Enable bit
- 1 = Enables the RB port change interrupt
- 0 = Disables the RB port change interrupt

bit 2: **T0IF:** TMR0 overflow interrupt flag bit
- 1 = TMR0 has overflowed (must be cleared in software)
- 0 = TMR0 did not overflow

bit 1: **INTF:** RB0/INT Interrupt Flag bit
- 1 = The RB0/INT interrupt occurred
- 0 = The RB0/INT interrupt did not occur

bit 0: **RBIF:** RB Port Change Interrupt Flag bit
- 1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software)
- 0 = None of the RB7:RB4 pins have changed state
4.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte is the PCL register, which is a readable and writable register. The high byte of the PC (PC<12:8>) is not directly readable nor writable and comes from the PCLATH register. The PCLATH (PC latch high) register is a holding register for PC<12:8>. The contents of PCLATH are transferred to the upper byte of the program counter when the PC is loaded with a new value. This occurs during a CALL, GOTO or a write to PCL. The high bits of PC are loaded from PCLATH as shown in Figure 4-6.

FIGURE 4-6: LOADING OF PC IN DIFFERENT SITUATIONS

<table>
<thead>
<tr>
<th>PC</th>
<th>PCL</th>
<th>INST with PCL as dest</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.3.2 STACK

The PIC16CXX has an 8 deep x 13-bit wide hardware stack (Figure 4-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The entire 13-bit PC is PUSH'ed onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is POP'ed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or a POP operation.

The stack operates as a circular buffer. That is, after the stack has been PUSH'ed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

If the stack is effectively POP'ed nine times, the PC value is the same as the value from the first POP.

4.3.3 PROGRAM MEMORY PAGING

The PIC16C83 and PIC16CR83 have 512 words of program memory. The PIC16C84, PIC16C84A, and PIC16CR84 have 1K of program memory. The CALL and GOTO instructions have an 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. For future PIC16C8X program memory expansion, there must be another two bits to specify the program memory page. These paging bits come from the PCLATH<4:3> bits (Figure 4-6). When doing a CALL or a GOTO instruction, the user must ensure that these page bits (PCLATH<4:3>) are programmed to the desired program memory page. If a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<4:3> is not required for the return instructions (which POPs the PC from the stack).

Note: The PIC16C8X ignores the PCLATH<4:3> bits, which are used for program memory pages 1, 2 and 3 (0800h - 1FFFh). The use of PCLATH<4:3> as general purpose R/W bits is not recommended since this may affect upward compatibility with future products.
4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register and is used in conjunction with the FSR register to perform indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-7. However, IRP is not used in the PIC16C8X.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

FIGURE 4-7: DIRECT/INDIRECT ADDRESSING

<table>
<thead>
<tr>
<th>Bank Select</th>
<th>Location Select</th>
<th>IRP 7</th>
<th>(FSR) 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 0</td>
<td>Bank 1</td>
<td>Bank 2</td>
<td>Bank 3</td>
</tr>
<tr>
<td>00h</td>
<td>01h</td>
<td>10h</td>
<td>11h</td>
</tr>
</tbody>
</table>

Note 1: PIC16C83, PIC16CR83, and PIC16C84 devices.
Note 2: PIC16C84A and PIC16CR84 devices
Note 3: For memory map detail see Figure 4-1.
5.0 I/O PORTS

The PIC16C8X family has two ports, PORTA and PORTB. Some port pins are multiplexed with an alternate function for other features on the device.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

A '1' on any bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. A '0' on any bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The RA4 pin is multiplexed with the TMR0 clock input.

EXAMPLE 5-1: INITIALIZING PORTA

```
CLRF PORTA ; Initialize PORTA by setting output data latches
BSF STATUS, RP0 ; Select Bank 1
MOVLW 0x0F ; Value used to initialize data direction
MOVWF TRISA ; Set RA<3:0> as inputs; RA4 as outputs; TRISA<7:5> are always read as '0'.
```

FIGURE 5-1: BLOCK DIAGRAM OF PINS RA3:RA0

Note: I/O pins have protection diodes to Vdd and Vss.

FIGURE 5-2: BLOCK DIAGRAM OF PIN RA4

Note: I/O pin has protection diodes to Vss only.

Note: For the PIC16C84 Only:
For crystal oscillator configurations operating below 500 kHz, the device may generate a spurious internal Q-clock when PORTA<0> switches states. This does not occur with an external clock in RC mode. To avoid this, the RA0 pin should be kept static, i.e. in input/output mode, pin RA0 should not be toggled.
TABLE 5-1: PORTA FUNCTIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit0</th>
<th>Buffer Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA0</td>
<td>bit0</td>
<td>TTL</td>
<td>Input/output</td>
</tr>
<tr>
<td>RA1</td>
<td>bit1</td>
<td>TTL</td>
<td>Input/output</td>
</tr>
<tr>
<td>RA2</td>
<td>bit2</td>
<td>TTL</td>
<td>Input/output</td>
</tr>
<tr>
<td>RA3</td>
<td>bit3</td>
<td>TTL</td>
<td>Input/output</td>
</tr>
<tr>
<td>RA4/T0CKI</td>
<td>bit4</td>
<td>ST</td>
<td>Input/output or external clock input for TMR0. Output is open drain type.</td>
</tr>
</tbody>
</table>

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on Power-on Reset</th>
<th>Value on all other resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>05h</td>
<td>PORTA</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>RA4/T0CKI</td>
<td>RA3</td>
<td>RA2</td>
<td>RA1</td>
<td>RA0</td>
<td>——x .xxxxx</td>
</tr>
<tr>
<td>85h</td>
<td>TRISA</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>TRISA3</td>
<td>TRISA2</td>
<td>TRISA1</td>
<td>TRISA0</td>
<td>----1 1111</td>
</tr>
</tbody>
</table>

Legend: x = unknown, u = unchanged, – = unimplemented read as '0'. Shaded cells are unimplemented, read as '0'.
5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' on any bit in the TRISB register puts the corresponding output driver in a hi-impedance mode. A '0' on any bit in the TRISB register puts the contents of the output latch on the selected pin(s).

Each of the PORTB pins have a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB’s pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The pins value in input mode are compared with the old value latched on the last read of PORTB. The “mismatch” outputs of the pins are OR’ed together to generate the RB port change interrupt.

FIGURE 5-3: BLOCK DIAGRAM OF PINS RB7:RB4

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

a) Read (or write) PORTB. This will end the mismatch condition.

b) Clear flag bit RBIF.

A mismatch condition will continue to set the RBIF bit. Reading PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression (see AN552 in the Embedded Control Handbook).

Note 1: For the PIC16C84 Only;
If a change on the I/O pin should occur when a read operation of PORTB is being executed (start of the Q2 cycle), the RBIF interrupt flag bit may not be set.

Note 2: For all other PIC16C8X devices;
For a change on the I/O pin to be recognized, the pulse width must be at least Tcy wide.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-4: BLOCK DIAGRAM OF PINS RB3:RB0 (PIC16C84 ONLY)
FIGURE 5-5: BLOCK DIAGRAM OF PINS RB3:RB0 (ALL OTHER PIC16C8X DEVICES)

EXAMPLE 5-2: INITIALIZING PORTB

```assembly
CLRF PORTB ; Initialize PORTB by
BSF STATUS, RP0 ; setting output
MOVWF 0xCF ; data latches
MOVWF TRISB ; Value used to
; initialize data
; direction
MOVWF TRISB ; Set RB<3:0> as inputs
; RB<5:4> as outputs
; RB<7:6> as inputs
```

TABLE 5-3: PORTB FUNCTIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit</th>
<th>Buffer Type</th>
<th>I/O Consistency Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB0/INT</td>
<td>bit0</td>
<td>TTL/ST(1)</td>
<td>Input/output pin or external interrupt input. Internal software programmable weak pull-up.</td>
</tr>
<tr>
<td>RB1</td>
<td>bit1</td>
<td>TTL</td>
<td>Input/output pin. Internal software programmable weak pull-up.</td>
</tr>
<tr>
<td>RB2</td>
<td>bit2</td>
<td>TTL</td>
<td>Input/output pin. Internal software programmable weak pull-up.</td>
</tr>
<tr>
<td>RB3</td>
<td>bit3</td>
<td>TTL</td>
<td>Input/output pin. Internal software programmable weak pull-up.</td>
</tr>
<tr>
<td>RB4</td>
<td>bit4</td>
<td>TTL</td>
<td>Input/output pin (with interrupt on change). Internal software programmable weak pull-up.</td>
</tr>
<tr>
<td>RB5</td>
<td>bit5</td>
<td>TTL</td>
<td>Input/output pin (with interrupt on change). Internal software programmable weak pull-up.</td>
</tr>
<tr>
<td>RB6</td>
<td>bit6</td>
<td>TTL/ST(2)</td>
<td>Input/output pin (with interrupt on change). Internal software programmable weak pull-up.</td>
</tr>
<tr>
<td>RB7</td>
<td>bit7</td>
<td>TTL/ST(2)</td>
<td>Input/output pin (with interrupt on change). Internal software programmable weak pull-up.</td>
</tr>
</tbody>
</table>

Note 1: I/O pins have diode protection to VDD and VSS.
2: TRISB = '1' enables weak pull-up if RBPU = '0' (OPTION<7>).

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on Power-on Reset</th>
<th>Value on all other resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>06h</td>
<td>PORTB</td>
<td>RB7</td>
<td>RB6</td>
<td>RB5</td>
<td>RB4</td>
<td>RB3</td>
<td>RB2</td>
<td>RB1</td>
<td>RB0/INT</td>
<td>xxxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td>08h</td>
<td>TRISB</td>
<td>TRIS8</td>
<td>TRIS6</td>
<td>TRIS5</td>
<td>TRIS4</td>
<td>TRIS3</td>
<td>TRIS2</td>
<td>TRIS1</td>
<td>TRIS0</td>
<td>1111</td>
<td>1111</td>
</tr>
<tr>
<td>08h</td>
<td>OPTION</td>
<td>RBPU</td>
<td>INTEDG</td>
<td>TOCS</td>
<td>T0SE</td>
<td>PSA</td>
<td>PS1</td>
<td>PS0</td>
<td></td>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>

Legend: TTL = TTL input, ST = Schmitt Trigger.
1: This buffer is a Schmitt Trigger input when configured as the external interrupt, except for the PIC16C84, which remains TTL.
2: This buffer is a Schmitt Trigger input when used in serial programming mode.
5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The `BCF` and `BSF` instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a `BSF` operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the `BSF` operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch is unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., `BCF`, `BSF`, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output current may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-6). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such that the pin voltage stabilizes (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a `NOP` or another instruction not accessing this I/O port.

Example 5-3 shows the effect of two sequential read-modify-write instructions (e.g., `BCF`, `BSF`, etc.) on an I/O port.

EXAMPLE 5-3: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

```
;Initial PORT settings: PORTB<7:4> Inputs
    PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;
    PORT latch  PORT pins
                  ------------  ---------
    BCF PORTB, 7 ; 01pp ppp    11pp ppp
    BCF PORTB, 6 ; 10pp ppp    11pp ppp
    BSF STATUS, RP0 ;
    BCF TRISB, 7 ; 10pp ppp    11pp ppp
    BCF TRISB, 6 ; 10pp ppp    10pp ppp
;
;Note that the user may have expected the
;pin values to be 00pp ppp. The 2nd BCF
;caused RB7 to be latched as the pin value
;(high).
```

FIGURE 5-6: SUCCESSIVE I/O OPERATION

Note:
This example shows as write to PORTB followed by a read from PORTB.

Note that:
- data setup time = (0.25 Tcy - Tpd)
- where: Tcy = instruction cycle
- Tpd = propagation delay

Therefore, at higher clock frequencies, a write followed by a read may be problematic.
6.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module timer/counter has the following features:
- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In timer mode, the Timer0 module (Figure 6-1) will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode TMR0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the T0 source edge select bit, T0SE (OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 Module and the Watchdog Timer. The prescaler assignment is controlled, in software, by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 Module. The prescaler is not readable or writable. When the prescaler (Section 6.3) is assigned to the Timer0 Module, the prescale value (1:2, 1:4, ..., 1:256) is software selectable.

6.1 TMR0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets the T0IF bit (INTCON<2>). The interrupt can be masked by clearing enable bit T0IE (INTCON<5>). The T0IF bit must be cleared in software by the Timer0 Module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt (Figure 6-4) cannot wake the processor from SLEEP since the timer is shut off during SLEEP.

FIGURE 6-1: TMR0 BLOCK DIAGRAM

- RA4/T0CKI pin
- Fosc/4
- Programmable Prescaler
- Sync with Internal clocks
- TMR0 register
- Data bus
- Set bit T0IF on Overflow

Note 1: Bits T0CS, T0SE, PS2, PS1, PS0 and PSA are located in the OPTION register.
2: The prescaler is shared with the Watchdog Timer (Figure 6-6)

FIGURE 6-2: TMR0 TIMING: INTERNAL CLOCK/NO PRESCALER

- PC
- Instruction Fetch
- TMR0
- Instruction Executed
- Write TMR0 executed
- Read TMR0 reads NT0
- Read TMR0 reads NT0
- Read TMR0 reads NT0 + 1
- Read TMR0 reads NT0 + 2

© 1995 Microchip Technology Inc.
FIGURE 6-3: TMR0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TMR0 INTERRUPT TIMING

Note 1: T0IF interrupt flag is sampled here (every Q1).
2: Interrupt latency = 3.25Tcy, where Tcy = instruction cycle time.
3: CLKOUT is available only in RC oscillator mode.
4: The timer clock (after the synchronizer circuit) which increments the timer from FFh to 00h immediately sets the T0IF bit. The TMR0 register will roll over 3 Tosc cycles later.
6.2 Using TMR0 with External Clock

When an external clock input is used for TMR0, it must meet certain requirements. The external clock requirement is due to internal phase clock (TOSC) synchronization. Also, there is a delay in the actual incrementing of the TMR0 register after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of pin RA4/T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (plus a small RC delay) and low for at least 2Tosc (plus a small RC delay). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by an asynchronous ripple counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (plus a small RC delay) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the AC Electrical Specifications of the desired device.

6.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 Module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

- **Ext. Clock Input or Prescaler Out (Note 2)**
- **Ext. Clock/Prescaler Output After Sampling**
- **Increment TMR0 (Q4)**
- **TMR0**
- **T0**, **T0 + 1**, **T0 + 2**

Note 1: Delay from clock input change to TMR0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc). Therefore, the error in measuring the interval between two edges on TMR0 input = ±4Tosc max.

Note 2: External clock if no prescaler selected, Prescaler output otherwise.

Note 3: The arrows ↑ indicate where sampling occurs. A small clock pulse may be missed by sampling.

6.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 Module, or as a postscaler for the Watchdog Timer (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusive between the Timer0 Module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 Module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 Module, all instructions writing to the Timer0 Module (e.g., **CLRF 1**, **MOVWF 1**, **BSF 1,x**...etc.) will clear the prescaler. When assigned to WDT, a **CLRWDT** instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.
Note: T0CS, T0SE, PSA, PS2:PS0 are bits in the OPTION register.
6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed “on the fly” during program execution).

Note: To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be taken even if the WDT is disabled. To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 → WDT)

```assembly
BCF STATUS, RP0 ;Bank 0
CLRF TMR0 ;Clear TMR0
;and Prescaler
BSF STATUS, RP0 ;Bank 1
CLRWDT ;Clears WDT
MOVLW b'xxxx1xxx' ;Select new
MOVWF OPTION ;prescale value
BCF STATUS, RP0 ;Bank 0
```

EXAMPLE 6-2: CHANGING PRESCALER (WDT → TIMER0)

```assembly
CLRWDT ;Clear WDT and
; prescaler
BSF STATUS, RP0 ;Bank 1
MOVLW b'xxxx0xxx' ;Select Timer0, new
; prescale value
; and clock source
MOVWF OPTION ;
BCF STATUS, RP0 ;Bank 0
```

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on Power-on Reset</th>
<th>Value on all other resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>TMR0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xxxx</td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>08h</td>
<td>INTCON</td>
<td>GIE</td>
<td>EEIE</td>
<td>T0IE</td>
<td>INTE</td>
<td>RBIE</td>
<td>T0IF</td>
<td>INTF</td>
<td>RBIF</td>
<td>0000 0000</td>
<td>0000 0000</td>
</tr>
<tr>
<td>81h</td>
<td>OPTION</td>
<td>RBPU</td>
<td>INTEDG</td>
<td>T0CS</td>
<td>T0SE</td>
<td>PSA</td>
<td>PS1</td>
<td>PS0</td>
<td></td>
<td>1111 1111</td>
<td>1111 1111</td>
</tr>
<tr>
<td>85h</td>
<td>TRISA</td>
<td></td>
<td></td>
<td></td>
<td>TRISA4</td>
<td>TRISA3</td>
<td>TRISA2</td>
<td>TRISA1</td>
<td>TRISA0</td>
<td>---1 1111</td>
<td>---1 1111</td>
</tr>
</tbody>
</table>

Legend:
- x = unknown, u = unchanged. - = unimplemented read as ‘0’. Shaded cells are not associated with Timer0.
7.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16C8X devices have 64 bytes of data EEPROM with an address range from 0h to 3Fh.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write-time will vary with voltage and temperature as well as from chip to chip. Please refer to AC specifications for exact limits.

When the device is code protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access this memory.

7.1 EEADR

The EEADR register can address up to a maximum of 256 bytes of data EEPROM. Only the first 64 bytes of data EEPROM are implemented and only six of the eight bits in the register (EEADR<5:0>) are required.

The upper two bits are address decoded. This means that these two bits should always be '0' to ensure that the address is in the 64 byte memory space.

FIGURE 7-1: EECON1 REGISTER (ADDRESS 88h)

<table>
<thead>
<tr>
<th>bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Unimplemented: Read as '0'</td>
</tr>
<tr>
<td>4</td>
<td>EEIF: EEPROM Write Operation Interrupt Flag bit</td>
</tr>
<tr>
<td></td>
<td>1 = The write operation completed (must be cleared in software)</td>
</tr>
<tr>
<td></td>
<td>0 = The write operation is not complete or has not been started</td>
</tr>
<tr>
<td>3</td>
<td>WRERR: EEPROM Error Flag bit</td>
</tr>
<tr>
<td></td>
<td>1 = A write operation is prematurely terminated</td>
</tr>
<tr>
<td></td>
<td>(any MCLR reset or any WDT reset during normal operation)</td>
</tr>
<tr>
<td></td>
<td>0 = The write operation completed</td>
</tr>
<tr>
<td>2</td>
<td>WREN: EEPROM Write Enable bit</td>
</tr>
<tr>
<td></td>
<td>1 = Allows write cycles</td>
</tr>
<tr>
<td></td>
<td>0 = Inhibits write to the data EEPROM</td>
</tr>
<tr>
<td>1</td>
<td>WR: Write Control bit</td>
</tr>
<tr>
<td></td>
<td>1 = initiates a write cycle. (The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.</td>
</tr>
<tr>
<td></td>
<td>0 = Write cycle to the data EEPROM is complete</td>
</tr>
<tr>
<td>0</td>
<td>RD: Read Control bit</td>
</tr>
<tr>
<td></td>
<td>1 = Initiates an EEPROM read (read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software.</td>
</tr>
<tr>
<td></td>
<td>0 = Does not initiate an EEPROM read</td>
</tr>
</tbody>
</table>

R = Readable bit
W = Writable bit
S = Settable bit
U = Unimplemented bit, read as '0'
- n = Value at POR reset
7.2 EECON1 and EECON2 Registers

EECON1 is the control register with five low order bits physically implemented. The upper-three bits are non-existent and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WREN bit is set when a write operation is interrupted by a MCLR reset or a WDT time-out reset during normal operation. In these situations, following reset, the user can check the WREN bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit EEIF is set when write is complete. It must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

7.3 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 7-1: DATA EEPROM READ

```assembly
BCF STATUS, RP0 ; Bank 0
MOVLW CONFIG_ADDR ;
MOVF EEADR ; Address to read
BSF STATUS, RP0 ; Bank 1
BSF EECON1, RD ; EE Read
BCF STATUS, RP0 ; Bank 0
MOVF EEDATA, W ; W = EEDATA
```

7.4 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 7-2: DATA EEPROM WRITE

```assembly
BSF STATUS, RP0 ; Bank 1
BCF INTCON, GIE ; Disable INTs.
MOVLW 55h ;
MOVF EECON2 ; Write 55h
MOVLW AAh ;
MOVF EECON2 ; Write AAh
BSF EECON1,WR ; Set WR bit
; begin write
BSF INTCON, GIE ; Enable INTs.
```

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

Note: For the PIC16C84 Only; The data EEPROM memory E/W cycle time may occasionally exceed the 10 ms specification (typical). To ensure that the write cycle is complete, use the EE interrupt or poll the WR bit (EECON1<1>). Both these events signify the completion of the write cycle.
7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 7-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit. The Total Endurance disk will help determine your comfort level.

Generally the EEPROM write failure will be a bit which was written as a '1', but reads back as a '0' (due to leakage off the bit).

EXAMPLE 7-3: WRITE VERIFY

- `BCF STATUS, RP0 ; Bank 0`
- `: ; Any code can go here`
- `: ;`
- `MOVF EEDATA, W ; Must be in Bank 0`
- `BSF STATUS, RP0 ; Bank 1`
- `READ`
- `BSF EECON1, RD ; YES, Read the value written`
- `BCF STATUS, RP0 ; Bank 0`
- `; Is the value written (in W reg) and read (in EEDATA) the same?`
- `SUBWF EEDATA, W ;`
- `BTFSS STATUS, Z ; Is difference 0?`
- `GOTO WRITE_ERR ; NO, Write error`
- `: ; YES, Good write`
- `: ; Continue program`

7.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

7.7 Data EEPROM Operation during Code Protect

When the device is code protected, the CPU is able to read and write unscrambled data to the Data EEPROM.

For ROM devices, there are two code protection bits (Section 8.9). One for the ROM program memory and one for the Data EEPROM memory.

7.8 Power Consumption Considerations

Note: For the PIC16C84 Only;

It is recommended that the EEADR<7:6>-bits be cleared. When either of these bits is set, the maximum IDD for the device is higher than when both are cleared. The specification is 400 µA. With EEADR<7:6>-cleared, the maximum is approximately 150 µA.

TABLE 7-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on Power-on Reset</th>
<th>Value on all other resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>08h</td>
<td>EEDATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>09h</td>
<td>EEADR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>88h</td>
<td>EECON1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>EEIF</td>
<td>WRERR</td>
<td>WREN</td>
<td>WR</td>
<td>RD</td>
<td>---0 x000</td>
</tr>
<tr>
<td>89h</td>
<td>EECON2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---- ----</td>
<td>----- ----</td>
</tr>
</tbody>
</table>

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by Data EEPROM.
8.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC16C8X has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are:

- OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16C8X has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. This design keeps the device in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode offers a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer time-out or through an interrupt. Several oscillator options are provided to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select the various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming.

FIGURE 8-1: CONFIGURATION WORD - PIC16C84

<table>
<thead>
<tr>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>U-1</th>
<th>R/P-u</th>
<th>R/P-u</th>
<th>R/P-u</th>
<th>R/P-u</th>
<th>R/P-u</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CP</td>
<td>PWRTE</td>
<td>WDTE</td>
<td>FOSC1</td>
<td>FOSC0</td>
</tr>
<tr>
<td>bit13</td>
<td></td>
</tr>
<tr>
<td>bit0</td>
<td></td>
</tr>
</tbody>
</table>

R = Readable bit
P = Programmable bit
U = Unimplemented bit, read as ‘1’
- n = Value at POR reset
u = unchanged

bit 13:5 Unimplemented: Read as ‘1’

bit 4 CP: Code Protection bit
1 = Code protection off
0 = All memory is code protected

bit 3 PWRTE: Power-up Timer Enable bit
1 = Power-up timer is enabled
0 = Power-up timer is disabled

bit 2 WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 1:0 FOSC1:FOSC0: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator
FIGURE 8-2: CONFIGURATION WORD - PIC16CR83 AND PIC16CR84

<table>
<thead>
<tr>
<th>R-u</th>
<th>R-u</th>
<th>R-u</th>
<th>R-u</th>
<th>R-u</th>
<th>R/P-u</th>
<th>R-u</th>
<th>R-u</th>
<th>R-u</th>
<th>R-u</th>
<th>R-u</th>
<th>R-u</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>CP</td>
<td>CP</td>
<td>CP</td>
<td>CP</td>
<td>DP</td>
<td>CP</td>
<td>CP</td>
<td>CP</td>
<td>CP</td>
<td>PWRTE</td>
<td>WDTE</td>
</tr>
</tbody>
</table>

bit13 \(\ldots \) bit0

- **R** = Readable bit
- **P** = Programmable bit
- \(-n \) = Value at POR reset
- **u** = unchanged

bit 13:8 **CP**: Program Memory Code Protection bit
1 = Code protection off
0 = Program memory is code protected

bit 7 **DP**: Data Memory Code Protection bit
1 = Code protection off
0 = Data memory is code protected

bit 6:4 **CP**: Program Memory Code Protection bit
1 = Code protection off
0 = Program memory is code protected

bit 3 **PWRTE**: Power-up Timer Enable bit
1 = Power-up timer is disabled
0 = Power-up timer is enabled

bit 2 **WDTE**: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 1:0 **FOSC1**: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

FIGURE 8-3: CONFIGURATION WORD - PIC16C83 AND PIC16C84A

<table>
<thead>
<tr>
<th>R/P-u</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>PWRTE</td>
<td>WDTE</td>
</tr>
</tbody>
</table>

bit13 \(\ldots \) bit0

- **R** = Readable bit
- **P** = Programmable bit
- \(-n \) = Value at POR reset
- **u** = unchanged

bit 13:4 **CP**: Code Protection bit
1 = Code protection off
0 = Program memory is code protected

bit 3 **PWRTE**: Power-up Timer Enable bit
1 = Power-up timer is disabled
0 = Power-up timer is enabled

bit 2 **WDTE**: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 1:0 **FOSC1**: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator
8.2 Oscillator Configurations

8.2.1 OSCILLATOR TYPES

The PIC16C8X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4).

FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

The PIC16C8X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 8-5).

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

The PIC16C84 capacitor selection for ceramic resonators is given in Table 8-1 and Table 8-2.

TABLE 8-1: PIC16C84 CAPACITOR SELECTION FOR CERAMIC RESONATORS

<table>
<thead>
<tr>
<th>Mode</th>
<th>Freq</th>
<th>OSC1/C1</th>
<th>OSC2/C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT</td>
<td>455 kHz</td>
<td>47 - 100 pF</td>
<td>47 - 100 pF</td>
</tr>
<tr>
<td></td>
<td>2.0 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td></td>
<td>4.0 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td>HS</td>
<td>8.0 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td></td>
<td>10.0 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
</tbody>
</table>

Note: Recommended values of C1 and C2 are identical to the ranges tested table. Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for the appropriate values of external components.

TABLE 8-2: PIC16C83/R83/R84A/R84 CAPACITOR SELECTION FOR CERAMIC RESONATORS

<table>
<thead>
<tr>
<th>Mode</th>
<th>Freq</th>
<th>OSC1/C1</th>
<th>OSC2/C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT</td>
<td>455 kHz</td>
<td>47 - 100 pF</td>
<td>47 - 100 pF</td>
</tr>
<tr>
<td></td>
<td>2.0 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td></td>
<td>4.0 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td>HS</td>
<td>8.0 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td></td>
<td>10.0 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
</tbody>
</table>

Note: Recommended values of C1 and C2 are identical to the ranges tested table. Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for the appropriate values of external components.

Resonators Tested:

- 455 kHz Panasonic EFO-A455K04B ± 0.3%
- 2.0 MHz Murata Erie CSA2.00MG ± 0.5%
- 4.0 MHz Murata Erie CSA4.00MG ± 0.5%
- 8.0 MHz Murata Erie CSA8.00MT ± 0.5%
- 10.0 MHz Murata Erie CSA10.00MTZ ± 0.5%

None of the resonators had built-in capacitors.
TABLE 8-3: PIC16C84 CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

<table>
<thead>
<tr>
<th>Mode</th>
<th>Freq</th>
<th>OSC1/C1</th>
<th>OSC2/C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>32 kHz</td>
<td>68 - 100 pF</td>
<td>68 - 100 pF</td>
</tr>
<tr>
<td></td>
<td>200 kHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td>XT</td>
<td>100 kHz</td>
<td>100 - 150 pF</td>
<td>100 - 150 pF</td>
</tr>
<tr>
<td></td>
<td>2 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td></td>
<td>4 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td>HS</td>
<td>4 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td></td>
<td>10 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
</tbody>
</table>

Note: Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

For $V_{DD} > 4.5\text{V}$, $C1 = C2 = 30\text{ pF}$ is recommended.

Crystals Tested:
- 32.768 kHz Epson C-001R32.768K-A ± 20 PPM
- 100 kHz Epson C-2 100.00 KC-P ± 20 PPM
- 200 kHz STD XTL 200.000 KHz ± 20 PPM
- 1.0 MHz ECS ECS-10-13-2 ± 50 PPM
- 2.0 MHz ECS ECS-20-S-2 ± 50 PPM
- 4.0 MHz ECS ECS-40-S-4 ± 50 PPM
- 10.0 MHz ECS ECS-100-S-4 ± 50 PPM

TABLE 8-4: PIC16C83/R83/84A/R84 CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

<table>
<thead>
<tr>
<th>Mode</th>
<th>Freq</th>
<th>OSC1/C1</th>
<th>OSC2/C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>32 kHz</td>
<td>68 - 100 pF</td>
<td>68 - 100 pF</td>
</tr>
<tr>
<td></td>
<td>200 kHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td>XT</td>
<td>100 kHz</td>
<td>100 - 150 pF</td>
<td>100 - 150 pF</td>
</tr>
<tr>
<td></td>
<td>2 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td></td>
<td>4 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td>HS</td>
<td>4 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
<tr>
<td></td>
<td>10 MHz</td>
<td>15 - 33 pF</td>
<td>15 - 33 pF</td>
</tr>
</tbody>
</table>

Note: Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

For $V_{DD} > 4.5\text{V}$, $C1 = C2 = 30\text{ pF}$ is recommended.

Crystals Tested:
- 32.768 kHz Epson C-001R32.768K-A ± 20 PPM
- 100 kHz Epson C-2 100.00 KC-P ± 20 PPM
- 200 kHz STD XTL 200.000 KHz ± 20 PPM
- 1.0 MHz ECS ECS-10-13-2 ± 50 PPM
- 2.0 MHz ECS ECS-20-S-2 ± 50 PPM
- 4.0 MHz ECS ECS-40-S-4 ± 50 PPM
- 10.0 MHz ECS ECS-100-S-4 ± 50 PPM
8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits are available; one with series resonance, and one with parallel resonance.

Figure 8-6 shows a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 kΩ resistor provides negative feedback for stability. The 10 kΩ potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 8-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift. The 330 kΩ resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 RC OSCILLATOR

For timing insensitive applications the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) values, capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low Cext values. The user needs to take into account variation due to tolerance of the external R and C components. Figure 8-8 shows how an R/C combination is connected to the PIC16C8X. For Rext values below 2.2 kΩ the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., 1 MΩ), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 kΩ and 100 kΩ.

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See the electrical specification section for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance has a greater effect on RC frequency).

See the electrical specification section for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 8-8: RC OSCILLATOR MODE

Note: When the device oscillator is in RC mode, do not drive the OSC1 pin with an external clock or you may damage the device.
8.3 Reset

The PIC16C8X differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)

Some registers are not affected in any reset condition; their status is unknown on a POR reset and unchanged in any other reset. Most other registers are reset to a "reset state" on POR, MCLR or WDT reset during normal operation and on MCLR reset during SLEEP. They are not affected by a WDT reset during SLEEP, since this reset is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations (Table 8-6). These bits are used in software to determine the nature of the reset. Table 8-8 gives a full description of reset states for all registers.

Figure 8-9 shows a simplified block diagram of the on-chip reset circuit.

For all devices, except the PIC16C84, the MCLR reset path has a noise filter to ignore small pulses. The electrical specifications specifies the pulse width requirements for the MCLR pin.

8.4 Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)

8.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD must be met for this to operate properly. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting."

The POR circuit does not produce an internal reset when VDD declines.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.
8.4.2 **POWER-UP TIMER (PWRT)**

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE, can enable/disable the PWRT (see Figure 8-1, Figure 8-2, and Figure 8-3 for the operation of the PWRTE bit for a particular device).

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

8.4.3 **OSCILLATOR START-UP TIMER (OST)**

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle delay (from OSC1 input) after the PWRT delay ends. This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 **TIME-OUT SEQUENCE**

On power-up (Figure 8-10, Figure 8-11, and Figure 8-12) the time-out sequence is as follows: First PWRT time-out is invoked after a POR has expired. Then the OST is activated. The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

TABLE 8-5: TIME-OUT IN VARIOUS SITUATIONS

<table>
<thead>
<tr>
<th>Oscillator Configuration</th>
<th>Power-up</th>
<th>Wake-up from SLEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT, HS, LP</td>
<td>72 ms + 1024Tosc</td>
<td>1024Tosc</td>
</tr>
<tr>
<td>RC</td>
<td>72 ms</td>
<td>—</td>
</tr>
</tbody>
</table>

Since the time-outs occur from the POR reset pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high, execution will begin immediately (Figure 8-11). This is useful for testing purposes or to synchronize more than one PIC16CXX device when operating in parallel.

Table 8-6 shows the significance of the TO and PD bits. Table 8-7 lists the reset conditions for some special registers, while Table 8-8 lists the reset conditions for all the registers.

TABLE 8-6: STATUS BITS AND THEIR SIGNIFICANCE

<table>
<thead>
<tr>
<th>TO</th>
<th>PD</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Power-on Reset</td>
</tr>
<tr>
<td>0</td>
<td>x</td>
<td>Illegal, TO is set on POR</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>Illegal, PD is set on POR</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>WDT Reset (during normal operation)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>WDT Wake-up</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MCLR Reset during normal operation</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>MCLR Reset during SLEEP or interrupt wake-up from SLEEP</td>
</tr>
</tbody>
</table>

TABLE 8-7: RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER

<table>
<thead>
<tr>
<th>Condition</th>
<th>Program Counter</th>
<th>STATUS Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-on Reset</td>
<td>000h</td>
<td>0001 lxxx</td>
</tr>
<tr>
<td>MCLR Reset during normal operation</td>
<td>000h</td>
<td>0001 luuu</td>
</tr>
<tr>
<td>MCLR Reset during SLEEP</td>
<td>000h</td>
<td>0001 0uuu</td>
</tr>
<tr>
<td>WDT Reset (during normal operation)</td>
<td>000h</td>
<td>0000 luuu</td>
</tr>
<tr>
<td>WDT Wake-up</td>
<td>PC + 1</td>
<td>uuu0 0uuu</td>
</tr>
<tr>
<td>Interrupt wake-up from SLEEP</td>
<td>PC + 1 (1)</td>
<td>uulu1 0uuu</td>
</tr>
</tbody>
</table>

Legend: u = unchanged, x = unknown.
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
TABLE 8-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS

<table>
<thead>
<tr>
<th>Register</th>
<th>Address</th>
<th>Power-on Reset</th>
<th>MCLR Reset during:</th>
<th>Wake-up from SLEEP:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>– normal operation</td>
<td>– through interrupt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– SLEEP</td>
<td>– through WDT time-out</td>
</tr>
<tr>
<td>W</td>
<td>—</td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>INDF</td>
<td>00h</td>
<td>---- ----</td>
<td>---- ----</td>
<td>---- ----</td>
</tr>
<tr>
<td>TMR0</td>
<td>01h</td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>PCL</td>
<td>02h</td>
<td>00000h</td>
<td>00000h</td>
<td>PC + 1</td>
</tr>
<tr>
<td>STATUS</td>
<td>03h</td>
<td>0001 1xxx</td>
<td>000q quuu</td>
<td>uuuq quuu</td>
</tr>
<tr>
<td>FSR</td>
<td>04h</td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>PORTA</td>
<td>05h</td>
<td>---- x xxxx</td>
<td>---- u uuuu</td>
<td>---- u uuuu</td>
</tr>
<tr>
<td>PORTB</td>
<td>06h</td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>EEDATA</td>
<td>08h</td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>EEADR</td>
<td>09h</td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>PCLATH</td>
<td>0Ah</td>
<td>---0 0000</td>
<td>---0 0000</td>
<td>---u uuuu</td>
</tr>
<tr>
<td>INTCON</td>
<td>0Bh</td>
<td>0000 000x</td>
<td>0000 000u</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>INDF</td>
<td>0Ch</td>
<td>---- ----</td>
<td>---- ----</td>
<td>---- ----</td>
</tr>
<tr>
<td>OPTION</td>
<td>0Dh</td>
<td>1111 1111</td>
<td>1111 1111</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>PCL</td>
<td>08h</td>
<td>00000h</td>
<td>00000h</td>
<td>PC + 1</td>
</tr>
<tr>
<td>STATUS</td>
<td>09h</td>
<td>0001 1xxx</td>
<td>000q quuu</td>
<td>uuuq quuu</td>
</tr>
<tr>
<td>FSR</td>
<td>0Ah</td>
<td>xxxx xxxx</td>
<td>uuuu uuuu</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>TRISA</td>
<td>0Bh</td>
<td>----1 1111</td>
<td>----1 1111</td>
<td>----u uuuu</td>
</tr>
<tr>
<td>TRISB</td>
<td>0Ch</td>
<td>1111 1111</td>
<td>1111 1111</td>
<td>uuuu uuuu</td>
</tr>
<tr>
<td>EECON1</td>
<td>0Dh</td>
<td>---0 0000</td>
<td>---0 q000</td>
<td>---0 uuuu</td>
</tr>
<tr>
<td>EECON2</td>
<td>0Eh</td>
<td>---- ----</td>
<td>---- ----</td>
<td>---- ----</td>
</tr>
<tr>
<td>PCLATH</td>
<td>0Fh</td>
<td>---0 0000</td>
<td>---0 0000</td>
<td>----u uuuu</td>
</tr>
<tr>
<td>INTCON</td>
<td>0Ah</td>
<td>0000 000x</td>
<td>0000 000u</td>
<td>uuuu uuuu</td>
</tr>
</tbody>
</table>

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON will be affected (to cause wake-up).
Note 2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
Note 3: Table 8-7 lists the reset value for each specific condition.
FIGURE 8-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 8-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 8-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)
FIGURE 8-13: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

Note 1: External Power-on Reset circuit is required only if VDD power-up rate is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.

2: $R < 40 \, \text{k}\Omega$ is recommended to make sure that voltage drop across R does not exceed 0.2V (max leakage current spec on MCLR pin is 5 μA). A larger voltage drop will degrade V_{IH} level on the MCLR pin.

3: $R_1 = 100\Omega$ to 1 kΩ will limit any current flowing into MCLR from external capacitor C in the event of an MCLR pin breakdown due to ESD or EOS.

FIGURE 8-14: BROWN-OUT PROTECTION CIRCUIT 1

This circuit will activate reset when VDD goes below $(Vz + 0.7V)$ where Vz = Zener voltage.

FIGURE 8-15: BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$VDD \cdot \frac{R_1}{R_1 + R_2} = 0.7V$$
8.5 Interrupts

The PIC16C8X group has 4 sources of interrupt:

- External interrupt RB0/INT pin
- TMR0 overflow interrupt
- PORTB change interrupts (pins RB7:RB4)
- EEPROM write complete interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also contains the individual and global interrupt enable bits.

The global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. Bit GIE is cleared on reset.

The “return from interrupt” instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which re-enable interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

When an interrupt is responded to; the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. For external interrupt events, such as the RB0/INT pin or PORTB change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-17). The latency is the same for both one and two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

Note 2: For the PIC16C84 Only:
- If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user’s Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:
 1. An instruction clears the GIE bit while an interrupt is acknowledged
 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
 3. The Interrupt Service Routine completes with the execution of the RETFIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.

The method to ensure that interrupts are globally disabled is:

1. Ensure that the GIE bit is cleared by the instruction, as shown in the following code:

 LOOP BCF INTCON,GIE ;Disable All
 ;Interrupts
 BTFSC INTCON,GIE ;All Interrupts
 ;Disabled?
 GOTO LOOP ;NO, try again
 ;Yes, continue
 ;with program
 ;flow
FIGURE 8-16: INTERRUPT LOGIC

- T0IE
- T0IF
- INTE
- INTF
- RBIE
- RBIF
- EEIE
- EEIF
- GIE

Wake-up (If in SLEEP mode)
Interrupt to CPU

FIGURE 8-17: INT PIN INTERRUPT TIMING

- OSC1
- CLKOUT
- INT pin
- INTF flag (INTCON<1>)
- GIE bit (INTCON<7>)

INSTRUCTION FLOW

<table>
<thead>
<tr>
<th>Instruction fetched</th>
<th>Instruction executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inst (PC)</td>
<td>Inst (PC-1)</td>
</tr>
<tr>
<td>Inst (PC+1)</td>
<td>Dummy Cycle</td>
</tr>
<tr>
<td>—</td>
<td>Dummy Cycle</td>
</tr>
<tr>
<td>Inst (0004h)</td>
<td>Inst (0004h)</td>
</tr>
<tr>
<td>Inst (0005h)</td>
<td>Inst (0005h)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC</th>
<th>PC</th>
<th>PC+1</th>
<th>PC+1</th>
<th>0004h</th>
<th>0005h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction fetched</td>
<td>Inst (PC)</td>
<td>Inst (PC+1)</td>
<td>—</td>
<td>Inst (0004h)</td>
<td>Inst (0005h)</td>
</tr>
<tr>
<td>Instruction executed</td>
<td>Inst (PC-1)</td>
<td>Inst (PC)</td>
<td>Dummy Cycle</td>
<td>Dummy Cycle</td>
<td>Inst (0004h)</td>
</tr>
</tbody>
</table>

Note:
1: INTF flag is sampled here (every Q1).
2: Interrupt latency = 3-4Tcy where Tcy = instruction cycle time.
 Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
3: CLKOUT is available only in RC oscillator mode.
4: For minimum width of INT pulse, refer to AC specs.
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.
8.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing control bit INTE (INTCON<4>). Flag bit INTF must be cleared in software via the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP (Section 8.8) only if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether the processor branches to the interrupt vector following wake-up.

8.5.2 TMR0 INTERRUPT

An overflow (FFh → 00h) in TMR0 will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 6.0).

8.5.3 PORT RB INTERRUPT

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<3>) (Section 5.2).

Note 1: For the PIC16C84 Only;
If a change on an I/O pin should occur when a read operation of PORTB is being executed (start of the Q2 cycle), the RBIF interrupt flag bit may not get set.

Note 2: For all other PIC16C8X devices;
For a change on the I/O pin to be recognized, the pulse width must be at least TCY wide.

8.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users wish to save key register values during an interrupt (e.g., W register and STATUS register). This is implemented in software.

Example 8-1 stores and restores the STATUS and W register’s values. The User defined registers, W_TEMP and STATUS_TEMP are the temporary storage locations for the W and STATUS registers values.

Example 8-1 does the following:

a) Stores the W register.
b) Stores the STATUS register in STATUS_TEMP
c) Executes the Interrupt Service Routine code.
d) Restores the STATUS (and bank select bit) register.
e) Restores the W register.

EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

```
PUSH MOVWF W_TEMP        ; Copy W to TEMP register,   
     SWAPF STATUS, W       ; Swap status to be saved into W   
     MOVWF STATUS_TEMP    ; Save status to STATUS_TEMP register  
ISR :                       : Interrupt Service Routine  
     :                       :     should configure Bank as required  
     :                       :  
POP SWAPF STATUS_TEMP, W   ; Swap nibbles in STATUS_TEMP register    
     MOVWF STATUS         ; Move W into STATUS register     ; (sets bank to original state)  
     SWAPF W_TEMP, F      ; Swap nibbles in W_TEMP and place result in W_TEMP  
     SWAPF W_TEMP, W      ; Swap nibbles in W_TEMP and place result into W  
```
8.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT Wake-up causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming configuration bit WDTE as a '0' (Section 8.1).

8.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWD and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out and generating a device RESET condition.

The T0 bit in the STATUS register will be cleared upon a WDT time-out.

8.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 8-18: WATCHDOG TIMER BLOCK DIAGRAM

[Diagram showing the block diagram of the Watchdog Timer.]

Note: PSA and PS2:PS0 are bits in the OPTION register.

TABLE 8-9: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

<table>
<thead>
<tr>
<th>Address</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on Power-on Reset</th>
<th>Value on all other resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007h</td>
<td>Config. bits</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>CP</td>
<td>PWRTET</td>
<td>WDETE</td>
<td>FOSC0</td>
<td>FOSC0</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>81h</td>
<td>OPTION</td>
<td>RBPD</td>
<td>INTEGD</td>
<td>T0CS</td>
<td>T0SE</td>
<td>PSA</td>
<td>PS2</td>
<td>PS1</td>
<td>PS0</td>
<td>1111 1111</td>
<td>1111 1111</td>
</tr>
</tbody>
</table>

Legend:
- x = unknown. Shaded cells are not used by the WDT.
- Note 1: See Figure 8-1, Figure 8-2, and Figure 8-3 for operation of the PWRTET bit.
- Note 2: See Figure 8-1, Figure 8-2, Figure 8-3, and Section 8.9 for operation of the Code and Data protection bits.
8.8 Power-down Mode (SLEEP)

The Power-down mode is entered by executing the `SLEEP` instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO bit (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the `SLEEP` instruction was executed (driving high, low, or hi-impedance).

For the lowest current consumption, in SLEEP mode, place all I/O pins at either at VDD, or VSS, with no external circuitry drawing current from the I/O pin, and disable external clocks. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TCKI input should also be at VDD or VSS. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low.

8.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

1. External reset input on MCLR pin.
2. WDT Wake-up (if WDT was enabled).
3. Interrupt from RB0/INT pin, RB port change, or data EEPROM write complete.

Peripherals cannot generate interrupts during SLEEP, since no on-chip Q clocks are present.

The first event (MCLR reset) will cause a device reset. The two latter events are considered a continuation of program execution. The TO and PD bits can be used to determine the cause of a device reset. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

While the `SLEEP` instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the `SLEEP` instruction. If the GIE bit is set (enabled), the device executes the instruction after the `SLEEP` instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following `SLEEP` is not desirable, the user should have a NOP after the `SLEEP` instruction.

The WDT is cleared when the device wakes-up from sleep, regardless of the source of wake-up.

Note: If global interrupts are disabled (GIE cleared), but any interrupt source has both its interrupt enable bit and corresponding interrupt flag bits set, the device will immediately wake from sleep. The `SLEEP` instruction is completely executed.

FIGURE 8-19: WAKE-UP FROM SLEEP THROUGH INTERRUPT

![Diagram of wake-up from sleep through interrupt](image)

Note 1: XT or LP oscillator mode assumed.

2: Test = 1024ToSC (drawing not to scale). This delay will not be there for RC osc mode.

3: When GIE is set, processor jumps to interrupt routine after wake-up. If GIE is clear, execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.
8.9 Code Protection

The code in the program memory and data EEPROM memory can be protected by programming the code protect bit (Figure 8-1, Figure 8-2, and Figure 8-3).

8.9.1 ROM DEVICES

There are two protection configuration bits. One for the program memory, which is specified as part of the ROM code submittal. The second for the EEPROM data memory. When ROM devices complete testing, the EEPROM data memory code protect configuration bit will be programmed to the same state as the program memory code protect configuration bit.

In applications where the device is code protected and the data EEPROM needs to be programmed before being placed in the application, the data EEPROM memory array needs to be erased and then the data memory code protect disabled. This will allow the desired data to be programmed into the device. The sequence to disable the data EEPROM memory protection is shown in the PIC16C84 Programming Specification (Literature number DS30189D) in Section 3.1.1.

After programming the data EEPROM memory array, the data EEPROM memory code protect configuration bit should be programmed as desired.

8.10 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations to store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable only during program/verify. Only the 4 least significant bits of ID location are usable.

For ROM devices, these values are submitted along with the ROM code.

8.11 In-Circuit Serial Programming

PIC16C8X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. Customers can manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product, allowing the most recent firmware or custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low, while raising the MCLR pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) points to location 00h. A 6-bit command is then supplied to the device, 14-bits of program data is then supplied to or from the device, using load or read-type instructions. For complete details of serial programming, please refer to the PIC16CXX Programming Specifications (Literature #DS30189).

FIGURE 8-20: TYPICAL IN-SYSTEM SERIAL PROGRAMMING CONNECTION

For ROM devices, both the program memory and Data EEPROM memory may be read, but only the Data EEPROM memory may be programmed.
9.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 9-2 lists byte-oriented, bit-oriented, and literal and control operations. Table 9-1 shows the opcode field descriptions.

Byte-oriented instructions: 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in the file register specified by the instruction.

Bit-oriented instructions: 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

Literal and control operations: 'k' represents an eight or eleven bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Register file address (0x00 to 0x7F)</td>
</tr>
<tr>
<td>W</td>
<td>Working register (accumulator)</td>
</tr>
<tr>
<td>b</td>
<td>Bit address within an 8-bit file register</td>
</tr>
<tr>
<td>k</td>
<td>Literal field, constant data or label</td>
</tr>
<tr>
<td>x</td>
<td>Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.</td>
</tr>
<tr>
<td>d</td>
<td>Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1</td>
</tr>
<tr>
<td>label</td>
<td>Label name</td>
</tr>
<tr>
<td>TOS</td>
<td>Top of Stack</td>
</tr>
<tr>
<td>PC</td>
<td>Program Counter</td>
</tr>
<tr>
<td>PCLATH</td>
<td>Program Counter High Latch</td>
</tr>
<tr>
<td>GIE</td>
<td>Global Interrupt Enable bit</td>
</tr>
<tr>
<td>WDT</td>
<td>Watchdog Timer/Counter</td>
</tr>
<tr>
<td>TO</td>
<td>Time-out bit</td>
</tr>
<tr>
<td>PD</td>
<td>Power-down bit</td>
</tr>
<tr>
<td>dest</td>
<td>Destination (Either the W register or the specified register file location)</td>
</tr>
<tr>
<td>[]</td>
<td>Options</td>
</tr>
<tr>
<td>()</td>
<td>Contents</td>
</tr>
<tr>
<td>→</td>
<td>Assigned to</td>
</tr>
<tr>
<td>< ></td>
<td>Register bit field</td>
</tr>
<tr>
<td>∈</td>
<td>In the set of</td>
</tr>
<tr>
<td>italics</td>
<td>User defined term (font is courier)</td>
</tr>
</tbody>
</table>

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented
- Bit-oriented
- Literal and control

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. The execution takes two instruction cycles with the second cycle executed as a NOP. Each cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 \(\mu s \).

The instruction execution time is 2 \(\mu s \) for program branches.

Table 9-2 lists the instructions recognized by Microchip's assembler (MPASM). Figure 9-1 shows the three general formats of instructions.

Note: To maintain upward compatibility with future PIC16CXX products, do not use the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

<table>
<thead>
<tr>
<th>Byte-oriented file register operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>OPCODE</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>f (FILE #)</td>
</tr>
<tr>
<td>d = 0 for destination W</td>
</tr>
<tr>
<td>d = 1 for destination f</td>
</tr>
<tr>
<td>f = 7-bit file register address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit-oriented file register operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>OPCODE</td>
</tr>
<tr>
<td>b (BIT #)</td>
</tr>
<tr>
<td>f (FILE #)</td>
</tr>
<tr>
<td>b = 3-bit bit address</td>
</tr>
<tr>
<td>f = 7-bit file register address</td>
</tr>
</tbody>
</table>

Literal and control operations

General

| 13 |
| 8 |
| 7 |
| 0 |
| OPCODE |
| k (literal) |

k = 8-bit immediate value

CALL and GOTO instructions only

| 13 |
| 11 |
| 10 |
| 0 |
| OPCODE |
| k (literal) |

k = 11-bit immediate value
TABLE 9-2: INSTRUCTION SET SUMMARY

<table>
<thead>
<tr>
<th>Mnemonic, Operands</th>
<th>Description</th>
<th>Cycles</th>
<th>14-Bit Opcode</th>
<th>Status</th>
<th>Affected</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDWF f, d</td>
<td>Add W and f</td>
<td>1</td>
<td>00 0111 dfff ffff</td>
<td>C,DC,Z</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>ANDWF f, d</td>
<td>AND W with f</td>
<td>1</td>
<td>00 0101 dfff ffff</td>
<td>Z</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>CLRWF f</td>
<td>Clear f</td>
<td>1</td>
<td>00 0001 1fff ffff</td>
<td>Z</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CLRW -</td>
<td>Clear W</td>
<td>1</td>
<td>00 0000 0xxx xxxx</td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMWF f, d</td>
<td>Complement f</td>
<td>1</td>
<td>00 1001 dfff ffff</td>
<td>Z</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>DECF f, d</td>
<td>Decrement f</td>
<td>1</td>
<td>00 0011 dfff ffff</td>
<td>Z</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>DECSZ f, d</td>
<td>Decrement f, Skip if 0</td>
<td>(2)</td>
<td>00 1111 dfff ffff</td>
<td>None</td>
<td></td>
<td>1,2,3</td>
</tr>
<tr>
<td>INCWF f, d</td>
<td>Increment f</td>
<td>1</td>
<td>00 1010 dfff ffff</td>
<td>Z</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>INCSZ f, d</td>
<td>Increment f, Skip if 0</td>
<td>(2)</td>
<td>00 1111 dfff ffff</td>
<td>None</td>
<td></td>
<td>1,2,3</td>
</tr>
<tr>
<td>IORWF f, d</td>
<td>Inclusive OR W with f</td>
<td>1</td>
<td>00 1000 dfff ffff</td>
<td>Z</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>MOVWF f, d</td>
<td>Move f</td>
<td>1</td>
<td>00 1000 dfff ffff</td>
<td>Z</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>MOVF f, d</td>
<td>Move W to f</td>
<td>1</td>
<td>00 0000 1fff ffff</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOP -</td>
<td>No Operation</td>
<td>1</td>
<td>00 0000 0xxx 0000</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLF f, d</td>
<td>Rotate left f through carry</td>
<td>1</td>
<td>00 1101 dfff ffff</td>
<td>C</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RRF f, d</td>
<td>Rotate right f through carry</td>
<td>1</td>
<td>00 1100 dfff ffff</td>
<td>C</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SUBWF f, d</td>
<td>Subtract W from f</td>
<td>1</td>
<td>00 0010 dfff ffff</td>
<td>C,DC,Z</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>SWAPF f, d</td>
<td>Swap nibbles in f</td>
<td>1</td>
<td>00 1110 dfff ffff</td>
<td>None</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>XORWF f, d</td>
<td>Exclusive OR W with f</td>
<td>1</td>
<td>00 0110 dfff ffff</td>
<td>Z</td>
<td></td>
<td>1,2</td>
</tr>
</tbody>
</table>

BIT-ORIENTED FILE REGISTER OPERATIONS

BCF f, b	Bit Clear f	1	01 00bb bfff ffff	None		1,2
BSF f, b	Bit Set f	1	01 01bb bfff ffff	None		1,2
BTFSC f, b	Bit Test f, Skip if Clear	1	01 10bb bfff ffff	None		3
BTFSS f, b	Bit Test f, Skip if Set	1	01 11bb bfff ffff	None		3

LITERAL AND CONTROL OPERATIONS

ADDLW k	Add literal and W	1	11 111x kkkk kkkk	C,DC,Z		
ANDLW k	AND literal with W	1	11 1101 kkkk kkkk	Z		
CALL k	Call subroutine	2	10 0kkk kkkk kkkk			
CLRWD TMI	Clear Watchdog Timer	1	00 0000 0110 0100	TO,PD		
GOTO k	Go to address	2	10 1kkk kkkk kkkk	None		
IORLW k	Inclusive OR literal with W	1	11 1000 kkkk kkkk	Z		
MOVLW k	Move literal to W	1	11 00xx kkkk kkkk	None		
RETFIE -	Return from interrupt	2	00 0000 0000 1001	None		
RETLW k	Return with literal in W	2	11 01xx kkkk kkkk	None		
RETURN -	Return from subroutine	2	00 0000 0000 1000	None		
SLEEP -	Go into standby mode	1	00 0000 0110 0111	TO,PD		
SUBLW k	Subtract W from literal	1	11 110x kkkk kkkk	C,DC,Z		
XORLW k	Exclusive OR literal with W	1	11 1010 kkkk kkkk	Z		

Notes:
1. When an I/O register is modified as a function of itself (i.e., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.
2. If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the TMR0.
3. If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.
9.1 Instruction Descriptions

ADDLW Add Literal and W

Syntax: \[\text{label} \] ADDLW \ k

Operands: \(0 \leq k \leq 255\)

Operation: \((W) + k \rightarrow (W)\)

Status Affected: C, DC, Z

Encoding:

\[
\begin{array}{c|cccc}
 & 11 & 111x & kkkk & kkkk \\
\end{array}
\]

Description: The contents of the W register are added to the eight bit literal 'k' and the result is placed back in the W register.

Words: 1

Cycles: 1

Example

```
ADDLW 0x15
```

Before Instruction

\(W = 0x10\)

After Instruction

\(W = 0x25\)

ANDLW AND Literal with W

Syntax: \[\text{label} \] ANDLW \ k

Operands: \(0 \leq k \leq 255\)

Operation: \((W) .AND. (k) \rightarrow (W)\)

Status Affected: Z

Encoding:

\[
\begin{array}{c|cccc}
 & 11 & 1001 & kkkk & kkkk \\
\end{array}
\]

Description: The contents of W register are AND’ed with the eight bit literal ‘k’. The result is placed back in the W register.

Words: 1

Cycles: 1

Example

```
ANDLW 0x5F
```

Before Instruction

\(W = 0xA3\)

After Instruction

\(W = 0x03\)

ADDWF Add W and f

Syntax: \[\text{label} \] ADDWF \ f,d

Operands: \(0 \leq f \leq 127\)
\(d \in [0,1]\)

Operation: \((W) + (f) \rightarrow \text{(dest)}\)

Status Affected: C, DC, Z

Encoding:

\[
\begin{array}{c|cccc}
 & 00 & 0111 & dfff & ffff \\
\end{array}
\]

Description: Add the contents of the W register to register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.

Words: 1

Cycles: 1

Example

```
ADDWF FSR, 0
```

Before Instruction

\(W = 0x17\)
\(FSR = 0xC2\)

After Instruction

\(W = 0xD9\)
\(FSR = 0x2\)

ANDWF AND W with f

Syntax: \[\text{label} \] ANDWF \ f,d

Operands: \(0 \leq f \leq 127\)
\(d \in [0,1]\)

Operation: \((W) .AND. (f) \rightarrow \text{(dest)}\)

Status Affected: Z

Encoding:

\[
\begin{array}{c|cccc}
 & 00 & 0101 & dfff & ffff \\
\end{array}
\]

Description: AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.

Words: 1

Cycles: 1

Example

```
ANDWF FSR, 1
```

Before Instruction

\(W = 0x17\)
\(FSR = 0xC2\)

After Instruction

\(W = 0x17\)
\(FSR = 0x02\)
BCF Bit Clear f

Syntax: \[label \] BCF f, b

Operands:

- \(0 \leq f \leq 127\)
- \(0 \leq b \leq 7\)

Operation:

\(0 \rightarrow (f\langle b\rangle)\)

Status Affected: None

Encoding:

```
01 00bb bfff ffff
```

Description: Bit 'b' in register 'f' is cleared.

Words: 1

Cycles: 1

Example

```assembly
BCF FLAG_REG, 7
```

Before Instruction

FLAG_REG = 0xC7

After Instruction

FLAG_REG = 0x47

BSF Bit Set f

Syntax: \[label \] BSF f, b

Operands:

- \(0 \leq f \leq 127\)
- \(0 \leq b \leq 7\)

Operation:

\(1 \rightarrow (f\langle b\rangle)\)

Status Affected: None

Encoding:

```
01 01bb bfff ffff
```

Description: Bit 'b' in register 'f' is set.

Words: 1

Cycles: 1

Example

```assembly
BSF FLAG_REG, 7
```

Before Instruction

FLAG_REG = 0x0A

After Instruction

FLAG_REG = 0x8A

BTFSC Bit Test f, Skip if Clear

Syntax: \[label \] BTFSC f, b

Operands:

- \(0 \leq f \leq 127\)
- \(0 \leq b \leq 7\)

Operation:

skip if \((f\langle b\rangle) = 0\)

Status Affected: None

Encoding:

```
01 10bb bfff ffff
```

Description: If bit 'b' in register 'f' is 0 then the next instruction is skipped.

Words: 1

Cycles: 1

Example

```assembly
HERE BTFSC FLAG, 1
FALSE GOTO PROCESS_CODE
TRUE
```

Before Instruction

PC = address HERE

After Instruction

if FLAG<1>=0,
PC=address TRUE
if FLAG<1>=1,
PC=address FALSE
BTFSS
Bit Test f, skip if Set
Syntax:
`[label] BTFSS f,b`

Operands:
`0 ≤ f ≤ 127`
`0 ≤ b < 7`

Operation:
`skip if (f) = 1`

Status Affected:
None

Encoding:
`01 11bb bfff ffff`

Description:
If bit 'b' in register 'f' is 1 then the next instruction is skipped. If bit 'b' is 1, then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.

Words:
1

Cycles:
1(2)

Example
`HERE BTFSC FLAG,1`
`FALSE GOTO PROCESS_CODE`
`TRUE`

Before Instruction
`PC = address HERE`

After Instruction
if `FLAG<1>=0`, `PC=address FALSE`
if `FLAG<1>=1`, `PC=address TRUE`

CALL
Subroutine Call
Syntax:
`[label] CALL k`

Operands:
`0 ≤ k ≤ 2047`

Operation:
`(PC)+ 1→ TOS, k→ (PC<10:0>), (PCLATH<4:3>)→ (PC<12:11>)`

Status Affected:
None

Encoding:
`10 0kkk kkkk kkkk`

Description:
Subroutine call. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.

Words:
1

Cycles:
2

Example
`HERE CALL THERE`

Before Instruction
`PC = Address HERE`

After Instruction
`PC = Address THERE`
`TOS = Address HERE`

CLRF
Clear f
Syntax:
`[label] CLRF f`

Operands:
`0 ≤ f ≤ 127`

Operation:
`00h → (f)`
`1 → Z`

Status Affected:
Z

Encoding:
`00 0001 lfff ffff`

Description:
The contents of register 'f' are cleared and the Z bit is set.

Words:
1

Cycles:
1

Example
`CLRF FLAG_REG`

Before Instruction
`FLAG_REG = 0x5A`

After Instruction
`FLAG_REG = 0x00`
`Z = 1`

CLRW
Clear W Register
Syntax:
`[label] CLRW`

Operands:
None

Operation:
`00h → (W)`
`1 → Z`

Status Affected:
Z

Encoding:
`00 0001 0xxx xxxx`

Description:
W register is cleared. Zero bit (Z) is set.

Words:
1

Cycles:
1

Example
`CLRW`

Before Instruction
`W = 0x5A`

After Instruction
`W = 0x00`
`Z = 1`
<table>
<thead>
<tr>
<th>CLRWDT</th>
<th>Clear Watchdog Timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax:</td>
<td>[label] CLRWDT</td>
</tr>
<tr>
<td>Operands:</td>
<td>None</td>
</tr>
<tr>
<td>Operation:</td>
<td>00h → WDT</td>
</tr>
<tr>
<td></td>
<td>0 → WDT prescaler,</td>
</tr>
<tr>
<td></td>
<td>1 → TO</td>
</tr>
<tr>
<td></td>
<td>1 → PD</td>
</tr>
<tr>
<td>Status Affected:</td>
<td>TO, PD</td>
</tr>
<tr>
<td>Encoding:</td>
<td>00 0000 0110 0100</td>
</tr>
<tr>
<td>Description:</td>
<td>The CLRWDT instruction resets the watchdog timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.</td>
</tr>
<tr>
<td>Words:</td>
<td>1</td>
</tr>
<tr>
<td>Cycles:</td>
<td>1</td>
</tr>
<tr>
<td>Example</td>
<td>CLRWDT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMF</th>
<th>Complement f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax:</td>
<td>[label] COMF f,d</td>
</tr>
<tr>
<td>Operands:</td>
<td>0 ≤ f ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d ∈ [0,1]</td>
</tr>
<tr>
<td>Operation:</td>
<td>(f) → (dest)</td>
</tr>
<tr>
<td>Status Affected:</td>
<td>Z</td>
</tr>
<tr>
<td>Encoding:</td>
<td>00 1001 dfff ffff</td>
</tr>
<tr>
<td>Description:</td>
<td>The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.</td>
</tr>
<tr>
<td>Words:</td>
<td>1</td>
</tr>
<tr>
<td>Cycles:</td>
<td>1</td>
</tr>
<tr>
<td>Example</td>
<td>COMP REG1, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECF</th>
<th>Decrement f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax:</td>
<td>[label] DECF f,d</td>
</tr>
<tr>
<td>Operands:</td>
<td>0 ≤ f ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d ∈ [0,1]</td>
</tr>
<tr>
<td>Operation:</td>
<td>(f) – 1 → (dest)</td>
</tr>
<tr>
<td>Status Affected:</td>
<td>Z</td>
</tr>
<tr>
<td>Encoding:</td>
<td>00 0011 dfff ffff</td>
</tr>
<tr>
<td>Description:</td>
<td>Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.</td>
</tr>
<tr>
<td>Words:</td>
<td>1</td>
</tr>
<tr>
<td>Cycles:</td>
<td>1</td>
</tr>
<tr>
<td>Example</td>
<td>DECF CNT, 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECFSZ</th>
<th>Decrement f, Skip if 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax:</td>
<td>[label] DECFSZ f,d</td>
</tr>
<tr>
<td>Operands:</td>
<td>0 ≤ f ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d ∈ [0,1]</td>
</tr>
<tr>
<td>Operation:</td>
<td>(f) – 1 → (dest); skip if result = 0</td>
</tr>
<tr>
<td>Status Affected:</td>
<td>None</td>
</tr>
<tr>
<td>Encoding:</td>
<td>00 1011 dfff ffff</td>
</tr>
<tr>
<td>Description:</td>
<td>The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.</td>
</tr>
<tr>
<td>Words:</td>
<td>1</td>
</tr>
<tr>
<td>Cycles:</td>
<td>1(2)</td>
</tr>
<tr>
<td>Example</td>
<td>HERE DECFSZ CNT, 1</td>
</tr>
</tbody>
</table>

Example

Before Instruction
 REG1 = 0x13

After Instruction
 REG1 = 0x13
 W = 0xEC

Before Instruction
 PC = addressHERE
 CNT = CNT - 1
if CNT = 0,
 PC = address CONTINUE
if CNT ≠ 0,
 PC = address HERE+1

After Instruction

GOTO
Go to address

Syntax:

\[\text{[label]} \ \text{GOTO} \ k \]

Operands:

\[0 \leq k \leq 2047 \]

Operation:

\[k \rightarrow (\text{PC}<10:0>) \]

\[(\text{PCLATH}<4:3>) \rightarrow (\text{PC}<12:11>) \]

Status Affected:

None

Encoding:

\[
\begin{array}{cccc}
10 & 1 & \text{k} & \text{k} & \text{k} & \text{k} \\
\end{array}
\]

Description:

GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.

Words:

1

Cycles:

2

Example

GOTO THERE

After Instruction

\[\text{PC} = \text{Address THERE} \]

INCFSZ
Increment f, Skip if 0

Syntax:

\[\text{[label]} \ \text{INCFSZ} \ f,d \]

Operands:

\[0 \leq f \leq 127 \]

\[d \in [0,1] \]

Operation:

\[(f) + 1 \rightarrow (\text{dest}) \]

\[\text{skip if result = 0} \]

Status Affected:

None

Encoding:

\[
\begin{array}{cccc}
00 & 1111 & \text{d} & \text{f} & \text{f} & \text{f} \\
\end{array}
\]

Description:

The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.

Words:

1

Cycles:

1(2)

Example

HERE INCFSZ CNT,

CONTINUE •

INCF
Increment f

Syntax:

\[\text{[label]} \ \text{INCF} \ f,d \]

Operands:

\[0 \leq f \leq 127 \]

\[d \in [0,1] \]

Operation:

\[(f) + 1 \rightarrow (\text{dest}) \]

Status Affected:

Z

Encoding:

\[
\begin{array}{cccc}
00 & 1010 & \text{d} & \text{f} & \text{f} & \text{f} \\
\end{array}
\]

Description:

The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.

Words:

1

Cycles:

1

Example

INCF CNT, 1

IORLW
Inclusive OR Literal with W

Syntax:

\[\text{[label]} \ \text{IORLW} \ k \]

Operands:

\[0 \leq k \leq 255 \]

Operation:

\[(\text{W}) .\text{OR.} (k) \rightarrow (\text{W}) \]

Status Affected:

Z

Encoding:

\[
\begin{array}{cccc}
11 & 1000 & \text{k} & \text{k} & \text{k} & \text{k} \\
\end{array}
\]

Description:

The contents of the W register are OR'ed to the eight bit literal 'k'. The result is placed in the W register.

Words:

1

Cycles:

1

Example

IORLW 0x35

Example

Before Instruction

\[\text{W} = 0x9A \]

After Instruction

\[\text{W} = 0xBF \]
IORWF

Inclusive OR W with f

Syntax:

```
[label] IORWF  f,d
```

Operands:

```
0 ≤ f ≤ 127
d ∈ [0,1]
```

Operation:

```
(W) .OR. (f) → (W)
```

Status Affected:

```
Z
```

Encoding:

```
00 0100 dfff ffff
```

Description:

Inclusive OR the W register to register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.

Words:

1

Cycles:

1

Example

```
IORWF RESULT, 0
```

Before Instruction

```
RESULT = 0x13
W = 0x91
```

After Instruction

```
RESULT = 0x13
W = 0x93
```

MOVF

Move f

Syntax:

```
[label] MOVF  f,d
```

Operands:

```
0 ≤ f ≤ 127
d ∈ [0,1]
```

Operation:

```
(f) → (dest)
```

Status Affected:

```
Z
```

Encoding:

```
00 1000 dfff ffff
```

Description:

The contents of register f is moved to destination d. If d = 0, destination is W register. If d = 1, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.

Words:

1

Cycles:

1

Example

```
MOVF FSR, 0
```

After Instruction

```
W = value in FSR register
```

MOVLW

Move literal to W

Syntax:

```
[label] MOVLW  k
```

Operands:

```
0 ≤ k ≤ 255
```

Operation:

```
k → (W)
```

Status Affected:

None

Encoding:

```
11 00XX kkkk kkkk
```

Description:

The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.

Words:

1

Cycles:

1

Example

```
MOVLW 0x5A
```

After Instruction

```
W = 0x5A
```

MOVWF

Move W to f

Syntax:

```
[label] MOVWF  f
```

Operands:

```
0 ≤ f ≤ 127
```

Operation:

```
(W) → (f)
```

Status Affected:

None

Encoding:

```
00 0000 1fff ffff
```

Description:

Move data from W register to register 'f'.

Words:

1

Cycles:

1

Example

```
MOVWF OPTION
```

Before Instruction

```
OPTION = 0xFF
W = 0x4F
```

After Instruction

```
OPTION = 0x4F
W = 0x4F
```
NOP No Operation

Syntax: [label] NOP
Operands: None
Operation: No operation
Status Affected: None
Encoding: 00 0000 0xx0 0000
Description: No operation.
Words: 1
Cycles: 1
Example: NOP

RETFIE Return from Interrupt

Syntax: [label] RETFIE
Operands: None
Operation: TOS → (PC),
 1 → GIE
Status Affected: None
Encoding: 00 0000 0000 1001
Description: The Stack is popped and Top of Stack (TOS) is loaded into the PC. Interrupts are enabled by setting the Global Interrupt Enable bit. This is a two cycle instruction.
Words: 1
Cycles: 2
Example: RETFIE
 After Interrupt
 PC = TOS
 GIE = 1

OPTION Load Option Register

Syntax: [label] OPTION
Operands: None
Operation: (W) → OPTION
Status Affected: None
Encoding: 00 0000 0110 0010
Description: The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.
Words: 1
Cycles: 1
Example

Note: To maintain upward compatibility with future PIC16CXX products, do not use this instruction.

RETLW Return Literal to W

Syntax: [label] RETLW k
Operands: 0 ≤ k ≤ 255
Operation: k → (W),
 TOS → (PC)
Status Affected: None
Encoding: 11 01xx kkkk kkkk
Description: The W register is loaded with the eight bit literal ‘k’. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.
Words: 1
Cycles: 2
Example

Note: To maintain upward compatibility with future PIC16CXX products, do not use this instruction.
RETURN
Return from Subroutine

<table>
<thead>
<tr>
<th>Syntax:</th>
<th>[label] RETURN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operands:</td>
<td>None</td>
</tr>
<tr>
<td>Operation:</td>
<td>TOS → (PC)</td>
</tr>
<tr>
<td>Status Affected:</td>
<td>None</td>
</tr>
<tr>
<td>Encoding:</td>
<td>00 0000 0000 1000</td>
</tr>
<tr>
<td>Description:</td>
<td>Return from subroutine. The stack is popped and the Top of Stack (TOS) is loaded into the program counter. This is a two cycle instruction.</td>
</tr>
<tr>
<td>Words:</td>
<td>1</td>
</tr>
<tr>
<td>Cycles:</td>
<td>2</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>

Example
After Interrupt
\[PC = TOS \]

RLF
Rotate Left f through Carry

<table>
<thead>
<tr>
<th>Syntax:</th>
<th>[label] RLF f,d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operands:</td>
<td>0 ≤ f ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d ∈ [0,1]</td>
</tr>
<tr>
<td>Operation:</td>
<td>See description below</td>
</tr>
<tr>
<td>Status Affected:</td>
<td>C</td>
</tr>
<tr>
<td>Encoding:</td>
<td>00 1101 dffe fffe</td>
</tr>
<tr>
<td>Description:</td>
<td>The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.</td>
</tr>
<tr>
<td>Words:</td>
<td>1</td>
</tr>
<tr>
<td>Cycles:</td>
<td>1</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>

Example
Before Instruction
\[\begin{align*} \text{REG1} &= 1110 \ 0110 \\ C &= 0 \end{align*} \]
After Instruction
\[\begin{align*} \text{REG1} &= 1110 \ 0110 \\ W &= 0111 \ 0011 \\ C &= 1 \end{align*} \]

RRF
Rotate Right f through Carry

<table>
<thead>
<tr>
<th>Syntax:</th>
<th>[label] RRF f,d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operands:</td>
<td>0 ≤ f ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d ∈ [0,1]</td>
</tr>
<tr>
<td>Operation:</td>
<td>See description below</td>
</tr>
<tr>
<td>Status Affected:</td>
<td>C</td>
</tr>
<tr>
<td>Encoding:</td>
<td>00 1100 dffe fffe</td>
</tr>
<tr>
<td>Description:</td>
<td>The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.</td>
</tr>
<tr>
<td>Words:</td>
<td>1</td>
</tr>
<tr>
<td>Cycles:</td>
<td>1</td>
</tr>
<tr>
<td>Example</td>
<td></td>
</tr>
</tbody>
</table>

Example
Before Instruction
\[\begin{align*} \text{REG1} &= 1110 \ 0110 \\ C &= 0 \end{align*} \]
After Instruction
\[\begin{align*} \text{REG1} &= 1110 \ 0110 \\ W &= 0111 \ 0011 \\ C &= 1 \end{align*} \]

SLEEP
Go into Standby Mode

<table>
<thead>
<tr>
<th>Syntax:</th>
<th>[label] SLEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operands:</td>
<td>None</td>
</tr>
<tr>
<td>Operation:</td>
<td>00h → WDT,</td>
</tr>
<tr>
<td></td>
<td>0 → WDT prescaler</td>
</tr>
<tr>
<td></td>
<td>1 → TO,</td>
</tr>
<tr>
<td></td>
<td>0 → PD</td>
</tr>
<tr>
<td>Status Affected:</td>
<td>TO, PD</td>
</tr>
<tr>
<td>Encoding:</td>
<td>00 0000 0110 0011</td>
</tr>
<tr>
<td>Description:</td>
<td>The power down status bit (PD) is cleared. Time-out status bit (TO) is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.</td>
</tr>
<tr>
<td>Words:</td>
<td>1</td>
</tr>
<tr>
<td>Cycles:</td>
<td>1</td>
</tr>
<tr>
<td>Example</td>
<td>SLEEP</td>
</tr>
</tbody>
</table>

Example
Before Instruction
\[\begin{align*} \text{REG1} &= 1110 \ 0110 \\ C &= 0 \end{align*} \]
After Instruction
\[\begin{align*} \text{REG1} &= 1110 \ 0110 \\ W &= 1100 \ 1100 \\ C &= 1 \end{align*} \]
SUBLW

Subtract W from Literal

Syntax:

```
[label] SUBLW k
```

Operands:

\(0 \leq k \leq 255 \)

Operation:

\(k - (W) \rightarrow (W) \)

Status Affected:

C, DC, Z

Encoding:

```
11 110x kkkk kkkk
```

Description:

The W register is subtracted (2’s complement method) from the eight bit literal ‘k’. The result is placed in the W register.

Words:

1

Cycles:

1

Example 1:

```
SUBLW 0x02
```

Before Instruction

- \(W = 1 \)
- \(C = ? \)

After Instruction

- \(W = 1 \)
- \(C = 1; \) result is positive

Example 2:

Before Instruction

- \(W = 2 \)
- \(C = ? \)

After Instruction

- \(W = 0 \)
- \(C = 1; \) result is zero

Example 3:

Before Instruction

- \(W = 3 \)
- \(C = ? \)

After Instruction

- \(W = FF \)
- \(C = 0; \) result is negative

SUBWF

Subtract W from f

Syntax:

```
[label] SUBWF f,d
```

Operands:

\(0 \leq f \leq 127 \)

\(d \in [0,1] \)

Operation:

\((f) - (W) \rightarrow (dest) \)

Status Affected:

C, DC, Z

Encoding:

```
00 0010 dfff ffff
```

Description:

Subtract (2’s complement method) W register from register ‘f’. If ‘d’ is 0 the result is stored in the W register. If ‘d’ is 1 the result is stored back in register ‘f’.

Words:

1

Cycles:

1

Example 1:

```
SUBWF REG1,1
```

Before Instruction

- \(\text{REG1} = 3 \)
- \(W = 2 \)
- \(C = ? \)

After Instruction

- \(\text{REG1} = 1 \)
- \(W = 2 \)
- \(C = 1; \) result is positive

Example 2:

Before Instruction

- \(\text{REG1} = 2 \)
- \(W = 2 \)
- \(C = ? \)

After Instruction

- \(\text{REG1} = 0 \)
- \(W = 2 \)
- \(C = 1; \) result is zero

Example 3:

Before Instruction

- \(\text{REG1} = 1 \)
- \(W = 2 \)
- \(C = ? \)

After Instruction

- \(\text{REG1} = FF \)
- \(W = 2 \)
- \(C = 0; \) result is negative
SWAPF

Syntax:

```plaintext
SWAPF f, d
```

Operands:

- `0 ≤ f ≤ 127`
- `d ∈ [0, 1]`

Operation:

- `(f<3:0>) → (dest<7:4>)`
- `(f<7:4>) → (dest<3:0>)`

Status Affected: None

Encoding:

| 00 | 0110 | dfff | ffff |

Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.

Words: 1

Cycles: 1

Example

```plaintext
SWAPF REG, 0
```

Before Instruction

- `REG1 = 0xA5`

After Instruction

- `REG1 = 0xA5`
- `W = 0x5A`

XORLW

Syntax:

```plaintext
XORLW k
```

Operands:

- `0 ≤ k ≤ 255`

Operation:

`(W) .XOR. k → (W)`

Status Affected: `Z`

Encoding:

| 11 | 1010 | kkkk | kkkk |

Description: The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.

Words: 1

Cycles: 1

Example

```plaintext
XORLW 0xAF
```

Before Instruction

- `W = 0xB5`

After Instruction

- `W = 0x1A`

TRIS

Syntax:

```plaintext
TRIS f
```

Operands:

- `5 ≤ f ≤ 7`

Operation:

`(W) → TRIS register (f)`

Status Affected: None

Encoding:

| 00 | 0000 | 0110 | 0fff |

Description: The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.

Words: 1

Cycles: 1

Example

```plaintext
TRIS REG, 0
```

Before Instruction

- `REG1 = 0xA5`

After Instruction

- `REG1 = 0xA5`
- `W = 0x5A`

XORWF

Syntax:

```plaintext
XORWF f, d
```

Operands:

- `0 ≤ f ≤ 127`
- `d ∈ [0, 1]`

Operation:

`(W) .XOR. (f) → (dest)`

Status Affected: `Z`

Encoding:

| 00 | 0110 | dfff | ffff |

Description: Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.

Words: 1

Cycles: 1

Example

```plaintext
XORWF REG 1
```

Before Instruction

- `REG = 0xAF`
- `W = 0xB5`

After Instruction

- `REG = 0x1A`
- `W = 0x5A`
10.0 DEVELOPMENT SUPPORT

10.1 Development Tools

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

• PICMASTER™ Real-Time In-Circuit Emulator
• PRO MATE™ Universal Programmer
• PICSTART™ Low-Cost Prototype Programmer
• PICDEM-1 Low-Cost Demonstration Board
• PICDEM-2 Low-Cost Demonstration Board
• MPASM Assembler
• MPSIM Software Simulator
• C Compiler (MP-C)
• Fuzzy logic development system (fuzzyTECH™-MP)

10.2 PICMASTER: High Performance
Universal In-Circuit Emulator with
MPLAB IDE

The PICMASTER Universal In-Circuit Emulator (Figure 10-1) is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC16C5X, PIC16CXX and PIC17CXX families. PICMASTER is supplied with the MPLAB™ Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new PIC16C5X, PIC16CXX and PIC17CXX microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and better) machine platform and Microsoft® Windows® 3.x environment was chosen to best make these features available to you, the end user.

The PICMASTER Universal Emulator System consists primarily of four major components:

• Host-Interface Card
• Emulator Control Pod
• Target-Specific Emulator Probe
• PC-Host Emulation Control Software

The Windows operating system allows the developer to take full advantage of the many powerful features and functions of the PICMASTER system.

PICMASTER emulation can operate in one window, while a text editor is running in a second window.

PC-Host Emulation Control software takes full advantage of Dynamic Data Exchange (DDE), a feature of Windows. DDE allows data to be dynamically transferred between two or more Windows programs. With this feature, data collected with PICMASTER can be automatically transferred to a spreadsheet or database program for further analysis.

Under Windows, as many as four PICMASTER emulators can be run simultaneously from the same PC making development of multi-microcontroller systems possible (e.g., a system containing a PIC16CXX processor and a PIC17CXX processor).

The PICMASTER probes specifications are shown in Table 10-1.

FIGURE 10-1: PICMASTER SYSTEM CONFIGURATION
TABLE 10-1: PICMASTER PROBE SPECIFICATION

<table>
<thead>
<tr>
<th>Devices</th>
<th>PICMASTER PROBE</th>
<th>PROBE</th>
<th>Maximum Frequency</th>
<th>Operating Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16C54 PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C54A PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR54 PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR54A PROBE-16D(1)</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR54B PROBE-16D(1)</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C55 PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR55 PROBE-16D(1)</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C56 PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR56 PROBE-16D(1)</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C57 PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR57A PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR57B PROBE-16D(1)</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C58A PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR58A PROBE-16D</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR58B PROBE-16D(1)</td>
<td>20 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C61 PROBE-16G</td>
<td>10 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C62 PROBE-16E</td>
<td>10 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C62A PROBE-16E(1)</td>
<td>10 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR62 PROBE-16E(1)</td>
<td>10 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C63 PROBE-16F(1)</td>
<td>10 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C64 PROBE-16E</td>
<td>10 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16C64A PROBE-16E(1)</td>
<td>10 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC16CR64 PROBE-16E(1)</td>
<td>10 MHz</td>
<td>4.5V - 5.5V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: This PICMASTER probe can be used to functionally emulate the device listed in the previous column. Contact your Microchip sales office for details.
10.3 PRO MATE: Universal Programmer

The PRO MATE Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode the PRO MATE can read, verify or program PIC16C5X, PIC16CXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

In PC-hosted mode, the PRO MATE connects to the PC via one of the COM (RS-232) ports. PC based user-interface software makes using the programmer simple and efficient. The user interface is full-screen and menu-based. Full screen display and editing of data, easy selection of bit configuration and part type, easy selection of VDD min, VDD max and VPP levels, load and store to and from disk files (Intel® hex format) are some of the features of the software. Essential commands such as read, verify, program and blank check can be issued from the screen. Additionally, serial programming support is possible where each part is programmed with a different serial number, sequential or random.

The PRO MATE has a modular “programming socket module”. Different socket modules are required for different processor types and/or package types.

PRO MATE supports all PIC16C5X, PIC16CXX and PIC17CXX processors.

10.4 PICSTART Low-Cost Development System

The PICSTART programmer is an easy to use, very low-cost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. A PC-based user interface software makes using the programmer simple and efficient. The user interface is full-screen and menu-based. PICSTART is not recommended for production programming.

10.5 PICDEM-1 Low-Cost PIC16/17 Demonstration Board

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.6 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I2C bus and separate headers for connection to an LCD module and a keypad.
10.7 **MPLAB Integrated Development Environment Software**

The MPLAB Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator (available soon)
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information
- Extensive on-line help

MPLAB allows you to:

- edit your source files (either assembly or "C")
- one touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- debug using:
 - source files
 - absolute listing file
- transfer data dynamically via DDE (soon to be replaced by OLE)
- run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator (available soon) allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.8 **Assembler (MPASM)**

The MPASM Cross Assembler is a PC-hosted symbolic assembler. It supports all microcontroller series including the PIC16C5X, PIC16CXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

- **Data Directives** are those that control the allocation of memory and provide a way to refer to data items symbolically (i.e., by meaningful names).
- **Control Directives** control the MPASM listing display. They allow the specification of titles and sub-titles, page ejects and other listing control. This eases the readability of the printed output file.
- **Conditional Directives** permit sections of conditionally assembled code. This is most useful where additional functionality may wished to be added depending on the product (less functionality for the low end product, then for the high end product). Also this is very helpful in the debugging of a program.
- **Macro Directives** control the execution and data allocation within macro body definitions. This makes very simple the re-use of functions in a program as well as between programs.
10.9 Software Simulator (MPSIM)

The MPSIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode. MPSIM fully supports symbolic debugging using MP-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.10 C Compiler (MP-C)

The MP-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the PICMASTER Universal Emulator memory display (PICMASTER emulator software versions 1.13 and later).

The MP-C Code Development System is supplied directly by Byte Craft Limited of Waterloo, Ontario, Canada. If you have any questions, please contact your regional Microchip FAE or Microchip technical support personnel at (602) 786-7627.

10.11 Fuzzy Logic Development System (fuzzyTECH-MP)

fuzzyTECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, fuzzyTECH-MP, edition for implementing more complex systems.

Both versions include Microchip's fuzzyLAB™ demonstration board for hands-on experience with fuzzy logic systems implementation.

10.12 Development Systems

For convenience, the development tools are packaged into comprehensive systems as listed in Table 10-2.

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>System Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PICMASTER System</td>
<td>PICMASTER In-Circuit Emulator, PRO MATE Programmer, Assembler, Software Simulator, Samples and your choice of Target Probe.</td>
</tr>
<tr>
<td>2.</td>
<td>PICSTART System</td>
<td>PICSTART Low-Cost Prototype Programmer, Assembler, Software Simulator and Samples.</td>
</tr>
<tr>
<td>3.</td>
<td>PRO MATE System</td>
<td>PRO MATE Universal Programmer, full featured stand-alone or PC-hosted programmer, Assembler, Simulator</td>
</tr>
</tbody>
</table>
11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C84

Absolute Maximum Ratings †

Ambient temperature under bias.. -55°C to +125°C
Storage temperature .. -65°C to +150°C

Voltage on VDD with respect to VSS ... 0 to +7.5V
Voltage on MCLR with respect to VSS (Note 2)... 0 to +14V
Voltage on all other pins with respect to VSS ... -0.6V to (VDD + 0.6V)
Total power dissipation (Note 1) .. 800 mW

Maximum current out of Vss pin .. 150 mA
Maximum current into VDD pin ... 100 mA
Input clamp current, Ik (Vi < 0 or Vi > VDD) ... ±20 mA
Output clamp current, Iok (V0 < 0 or V0 > VDD) .. ±20 mA
Maximum output current sunk by any I/O pin .. 25 mA
Maximum output current sourced by any I/O pin 20 mA
Maximum current sunk by PORTA .. 80 mA
Maximum current sourced by PORTA .. 50 mA
Maximum current sunk by PORTB .. 150 mA
Maximum current sourced by PORTB .. 100 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x (I DD - ∑ IOH) + (VDD-VOH) x IOH + (VOI x IOL)

Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR pin rather than pulling this pin directly to Vss.

†NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

<table>
<thead>
<tr>
<th>OSC</th>
<th>PIC16C84-04</th>
<th>PIC16C84-10</th>
<th>PIC16LC84-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>Vdd: 4.0V to 6.0V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Vdd: 2.0V to 6.0V</td>
</tr>
<tr>
<td></td>
<td>Idd: 4.5 mA max. at 5.5V</td>
<td>Idc: 1.8 mA typ. at 5.5V</td>
<td>Idc: 4.5 mA typ. at 5.5V</td>
</tr>
<tr>
<td></td>
<td>Ip0: 100 µA max. at 4.0V WDT dis</td>
<td>Ip0: 40.0 µA typ. at 4.5V WDT dis</td>
<td>Ip0: 100 µA typ. at 4V WDT dis</td>
</tr>
<tr>
<td></td>
<td>Freq: 4.0 MHz max.</td>
<td>Freq: 4.0 MHz max.</td>
<td>Freq: 2.0 MHz max.</td>
</tr>
<tr>
<td>XT</td>
<td>Vdd: 4.0V to 6.0V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Vdd: 2.0V to 6.0V</td>
</tr>
<tr>
<td></td>
<td>Idc: 4.5 mA max. at 5.5V</td>
<td>Idc: 1.8 mA typ. at 5.5V</td>
<td>Idc: 4.5 mA typ. at 5.5V</td>
</tr>
<tr>
<td></td>
<td>Ip0: 100 µA max. at 4.0V WDT dis</td>
<td>Ip0: 40.0 µA typ. at 4.5V WDT dis</td>
<td>Ip0: 100 µA typ. at 4V WDT dis</td>
</tr>
<tr>
<td></td>
<td>Freq: 4.0 MHz max.</td>
<td>Freq: 4.0 MHz max.</td>
<td>Freq: 2.0 MHz max.</td>
</tr>
<tr>
<td>HS</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Do not use in HS mode</td>
</tr>
<tr>
<td></td>
<td>Idc: 4.5 mA typ. at 5.5V</td>
<td>Idc: 10 mA max. at 5.5V typ.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ip0: 40.0 µA typ. at 4.5V WDT dis</td>
<td>Ip0: 40.0 µA typ. at 4.5V WDT dis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freq: 4.0 MHz max.</td>
<td>Freq: 10 MHz max.</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>Vdd: 4.0V to 6.0V</td>
<td>Do not use in LP mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idc: 60 µA typ. at 32 kHz, 2.0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ip0: 26 µA typ. at 2.0V WDT dis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freq: 200 kHz max.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.
11.1 DC CHARACTERISTICS:

PIC16C84-04 (Commercial, Industrial)

PIC16C84-10 (Commercial, Industrial)

DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>VDD</td>
<td>Supply Voltage</td>
<td>4.0</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>XT, RC and LP osc configuration</td>
</tr>
<tr>
<td>D001A</td>
<td></td>
<td></td>
<td>4.5</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>HS osc configuration</td>
</tr>
<tr>
<td>D002</td>
<td>VDR</td>
<td>RAM Data Retention</td>
<td>1.5†</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Device in SLEEP mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D003</td>
<td>VPOR</td>
<td>VDD start voltage to</td>
<td>—</td>
<td>VSS</td>
<td>—</td>
<td>V</td>
<td>See section on Power-on Reset for details</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ensure Power-on Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D004</td>
<td>SVDD</td>
<td>VDD rise rate to</td>
<td>0.05*</td>
<td>—</td>
<td>—</td>
<td>V/m</td>
<td>See section on Power-on Reset for details</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ensure Power-on Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D010</td>
<td>IDD</td>
<td>Supply Current (Note 2)</td>
<td>—</td>
<td>1.8</td>
<td>4.5</td>
<td>mA</td>
<td>RC and XT osc configuration (Note 4)</td>
</tr>
<tr>
<td>D010A</td>
<td></td>
<td></td>
<td>—</td>
<td>7.3</td>
<td>10</td>
<td>mA</td>
<td>FOSC = 4 MHz, VDD = 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>5.0</td>
<td>10</td>
<td>mA</td>
<td>(During EEPROM programming)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FOSC = 10 MHz, VDD = 5.5V</td>
</tr>
<tr>
<td>D013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HS osc configuration (PIC16C84-10)</td>
</tr>
<tr>
<td>D020</td>
<td>IPD</td>
<td>Power-down Current</td>
<td>—</td>
<td>40</td>
<td>100</td>
<td>µA</td>
<td>VDD = 4.0V, WDT enabled, -40°C to +85°C</td>
</tr>
<tr>
<td>D021A</td>
<td></td>
<td>(Note 3)</td>
<td>—</td>
<td>38</td>
<td>100</td>
<td>µA</td>
<td>VDD = 4.0V, WDT disabled, -0°C to +70°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>38</td>
<td>100</td>
<td>µA</td>
<td>VDD = 4.0V, WDT disabled, -40°C to +85°C</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

Note 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on current consumption.

The test conditions for all IDD measurements in active operation mode are:
- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Note 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

Note 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.
11.2 DC CHARACTERISTICS: PIC16LC84-04 (Commercial, Industrial)

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ †</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>VDD</td>
<td>Supply Voltage</td>
<td>2.0</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>XT, RC, and LP osc configuration</td>
</tr>
<tr>
<td>D002</td>
<td>VDR</td>
<td>RAM Data Retention Voltage (Note 1)</td>
<td>1.5 *</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Device in SLEEP mode</td>
</tr>
<tr>
<td>D003</td>
<td>VPOR</td>
<td>VDD start voltage to ensure Power-on Reset</td>
<td>—</td>
<td>VSS</td>
<td>—</td>
<td>V</td>
<td>See section on Power-on Reset for details</td>
</tr>
<tr>
<td>D004</td>
<td>SVDD</td>
<td>VDD rise rate to ensure Power-on Reset</td>
<td>0.05*</td>
<td>—</td>
<td>—</td>
<td>V/ms</td>
<td>See section on Power-on Reset for details</td>
</tr>
<tr>
<td>D010, D010A</td>
<td>IDD</td>
<td>Supply Current (Note 2)</td>
<td>—</td>
<td>1.8</td>
<td>4.5</td>
<td>mA</td>
<td>RC and XT osc configuration (Note 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>7.3</td>
<td>10</td>
<td>mA</td>
<td>FOSC = 2 MHz, VDD = 5.5V</td>
</tr>
<tr>
<td>D014</td>
<td></td>
<td></td>
<td>—</td>
<td>60</td>
<td>400</td>
<td>μA</td>
<td>FOSC = 32 kHz, VDD = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>26</td>
<td>100</td>
<td>μA</td>
<td>WDT disabled</td>
</tr>
<tr>
<td>D020, D021, D021A</td>
<td>IPD</td>
<td>Power-down Current (Note 3)</td>
<td>—</td>
<td>26</td>
<td>100</td>
<td>μA</td>
<td>VDD = 2.0V, WDT enabled, -40°C to +85°C</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula \(I_R = \frac{VDD}{2R_{ext}} \) (mA) with Rext in kOhm.
DC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

- Operating temperature:
 -40°C ≤ TA ≤ +85°C for industrial and
 0°C ≤ TA ≤ +70°C for commercial

- Operating voltage VDD range as described in DC spec Section 11-1 and Section 11-3.

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D030</td>
<td>VIL</td>
<td>Input Low Voltage</td>
<td>VSS</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td>4.5 ≤ VDD ≤ 5.5V</td>
</tr>
<tr>
<td>D030A</td>
<td></td>
<td>with TTL buffer</td>
<td>VSS</td>
<td>—</td>
<td>0.16VDD</td>
<td>V</td>
<td>entire range (Note 4)</td>
</tr>
<tr>
<td>D031</td>
<td></td>
<td>with Schmitt Trigger buffer</td>
<td>VSS</td>
<td>—</td>
<td>0.2VDD</td>
<td>V</td>
<td>entire range</td>
</tr>
<tr>
<td>D032</td>
<td>MCLR, RA4/T0CKI, OSC1 (RC mode)</td>
<td>Vss</td>
<td>—</td>
<td>0.2VDD</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D033</td>
<td>OSC1 (XT, HS and LP modes)</td>
<td>Vss</td>
<td>—</td>
<td>0.3VDD</td>
<td>V</td>
<td>Note1</td>
<td></td>
</tr>
<tr>
<td>D040</td>
<td>VIH</td>
<td>Input High Voltage</td>
<td>0.36VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>4.5 ≤ VDD ≤ 5.5V</td>
</tr>
<tr>
<td>D040A</td>
<td></td>
<td>with TTL buffer</td>
<td>0.48VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>entire range (Note 4)</td>
</tr>
<tr>
<td>D041</td>
<td></td>
<td>with Schmitt Trigger buffer</td>
<td>0.45VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>entire range</td>
</tr>
<tr>
<td>D042</td>
<td>MCLR, RA4/T0CKI, OSC1 (RC mode)</td>
<td>0.85VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D043</td>
<td>OSC1 (XT, HS and LP modes)</td>
<td>0.7VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>Note1</td>
<td></td>
</tr>
<tr>
<td>D050</td>
<td>VHYS</td>
<td>Hysteresis of Schmitt Trigger inputs</td>
<td>TBD</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D070</td>
<td>IPURB</td>
<td>PORTB weak pull-up current</td>
<td>50*</td>
<td>250*</td>
<td>400*</td>
<td>µA</td>
<td>VDD = 5V, VPIN = VSS</td>
</tr>
<tr>
<td>D060</td>
<td>IIL</td>
<td>Input Leakage Current (Notes 2, 3)</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
<td>Vss ≤ VPIN ≤ VDD, Pin at hi-impedance</td>
</tr>
<tr>
<td>D061</td>
<td>MCLR, RA4/T0CKI</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>µA</td>
<td>Vss ≤ VPIN ≤ VDD</td>
<td></td>
</tr>
<tr>
<td>D063</td>
<td>OSC1/CLKIN</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>µA</td>
<td>Vss ≤ VPIN ≤ VDD, XT, HS and LP osc configuration</td>
<td></td>
</tr>
<tr>
<td>D080</td>
<td>VOL</td>
<td>Output Low Voltage</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
<td>IOH = 8.5 mA, VDD = 4.5V</td>
</tr>
<tr>
<td>D083</td>
<td>OSC2/CLKOUT (RC osc configuration)</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
<td>IOH = 1.6 mA, VDD = 4.5V</td>
<td></td>
</tr>
<tr>
<td>D090</td>
<td>VOH</td>
<td>Output High Voltage</td>
<td>VDD - 0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IOH = -3.0 mA, VDD = 4.5V</td>
</tr>
<tr>
<td>D093</td>
<td>OSC2/CLKOUT (RC osc configuration)</td>
<td>VDD - 0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IOH = -1.3 mA, VDD = 4.5V</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C84 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: The user may use better of the two specs.
DC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D100</td>
<td>COSC2</td>
<td>Capacitive Loading Specs on Output Pins</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>pF</td>
<td>In XT, HS and LP modes when external clock is used to drive OSC1.</td>
</tr>
<tr>
<td>D101</td>
<td>CIO</td>
<td>All I/O pins and OSC2 (RC mode)</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>D120</td>
<td>ED</td>
<td>Endurance</td>
<td>100,000</td>
<td>1,000,000</td>
<td>—</td>
<td>E/W</td>
<td></td>
</tr>
<tr>
<td>D121</td>
<td>VDRW</td>
<td>VDD for read/write</td>
<td>VMIN</td>
<td>6.0</td>
<td>V</td>
<td>VMIN = Minimum operating voltage</td>
<td></td>
</tr>
<tr>
<td>D122</td>
<td>TDEW</td>
<td>Erase/Write cycle time</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>ms</td>
<td>Note 1</td>
</tr>
<tr>
<td>D130</td>
<td>EP</td>
<td>Endurance</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>E/W</td>
<td></td>
</tr>
<tr>
<td>D131</td>
<td>VPR</td>
<td>VDD for read</td>
<td>VMIN</td>
<td>6.0</td>
<td>V</td>
<td>VMIN = Minimum operating voltage</td>
<td></td>
</tr>
<tr>
<td>D132</td>
<td>VPEW</td>
<td>VDD for erase/write</td>
<td>4.5</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D133</td>
<td>TPEW</td>
<td>Erase/Write cycle time</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>ms</td>
<td>Note 1</td>
</tr>
</tbody>
</table>

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The user should use interrupts or poll the EEIF or WR bits to ensure the write cycle has completed.
TABLE 11-2: TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. \(T_{ppS_2ppS} \)
2. \(T_{ppS} \)

<table>
<thead>
<tr>
<th>T</th>
<th>F</th>
<th>Frequency</th>
<th>T</th>
<th>Time</th>
</tr>
</thead>
</table>

Lowercase symbols (pp) and their meanings:

<table>
<thead>
<tr>
<th>pp</th>
<th>ck</th>
<th>CLKOUT</th>
<th>osc</th>
<th>OSC1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>io</td>
<td>I/O port</td>
<td>t0</td>
<td>T0CKI</td>
</tr>
<tr>
<td></td>
<td>mc</td>
<td>MCLR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uppercase symbols and their meanings:

<table>
<thead>
<tr>
<th>S</th>
<th>F</th>
<th>Fall</th>
<th>P</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>High</td>
<td>R</td>
<td>Rise</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Invalid (Hi-impedance)</td>
<td>V</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>Low</td>
<td>Z</td>
<td>Hi-impedance</td>
</tr>
</tbody>
</table>

FIGURE 11-1: PARAMETER MEASUREMENT INFORMATION

All timings are measured between high and low measurement points as indicated in the figure.

FIGURE 11-2: LOAD CONDITIONS

Load Condition 1

Load Condition 2

\(RL = 464 \Omega \)

\(CL = 50 \text{ pF for all pins except OSC2.} \)

\(15 \text{ pF for OSC2 output.} \)
11.5 Timing Diagrams and Specifications

FIGURE 11-3: EXTERNAL CLOCK TIMING

![External Clock Timing Diagram](image)

TABLE 11-3: EXTERNAL CLOCK TIMING REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fos</td>
<td>External CLkin Frequency</td>
<td>DC</td>
<td>—</td>
<td>2</td>
<td>MHz</td>
<td>XT, RC osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Note 1)</td>
<td>DC</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>XT, RC osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>10</td>
<td>MHz</td>
<td>HS osc PIC16C84-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>200</td>
<td>kHz</td>
<td>LP osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td>Osc</td>
<td>Oscillator Frequency</td>
<td>DC</td>
<td>—</td>
<td>2</td>
<td>MHz</td>
<td>RC osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Note 1)</td>
<td>DC</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>RC osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>—</td>
<td>2</td>
<td>MHz</td>
<td>XT osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>XT osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>—</td>
<td>10</td>
<td>MHz</td>
<td>HS osc PIC16C84-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>200</td>
<td>kHz</td>
<td>LP osc PIC16LC84-04</td>
</tr>
<tr>
<td>1</td>
<td>Tosc</td>
<td>External CLkin Period</td>
<td>500</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT, RC osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Note 1)</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT, RC osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>HS osc PIC16C84-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td>LP osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td>Osc</td>
<td>Oscillator Period</td>
<td>500</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>RC osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Note 1)</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>RC osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>—</td>
<td>10,000</td>
<td>ns</td>
<td>XT osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>—</td>
<td>10,000</td>
<td>ns</td>
<td>XT osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>—</td>
<td>1,000</td>
<td>ns</td>
<td>HS osc PIC16C84-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td>LP osc PIC16C84-04</td>
</tr>
<tr>
<td>2</td>
<td>TCY</td>
<td>Instruction Cycle Time (Note 1)</td>
<td>0.4</td>
<td>4/Fosc</td>
<td>DC</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tosl, Tosh</td>
<td>Clock in (OSC1) High or Low Time</td>
<td>60 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 *</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td>LP osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>HS osc PIC16C84-10</td>
</tr>
<tr>
<td>4</td>
<td>TosR, TosF</td>
<td>Clock in (OSC1) Rise or Fall Time</td>
<td>25 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT osc PIC16C84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>LP osc PIC16LC84-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>HS osc PIC16C84-10</td>
</tr>
</tbody>
</table>

† Data in "Typ" column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCy) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
FIGURE 11-4: CLKOUT AND I/O TIMING

TABLE 11-4: CLKOUT AND I/O TIMING REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>TosH2ckL</td>
<td>OSC1↑ to CLKOUT↓</td>
<td>—</td>
<td>15</td>
<td>30 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>10A</td>
<td></td>
<td>PIC16C84</td>
<td>—</td>
<td>15</td>
<td>120 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>11</td>
<td>TosH2ckH</td>
<td>OSC1↑ to CLKOUT↑</td>
<td>—</td>
<td>15</td>
<td>30 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>11A</td>
<td></td>
<td>PIC16C84</td>
<td>—</td>
<td>15</td>
<td>120 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>12</td>
<td>TckR</td>
<td>CLKOUT rise time</td>
<td>—</td>
<td>15</td>
<td>30 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>12A</td>
<td></td>
<td>PIC16C84</td>
<td>—</td>
<td>15</td>
<td>100 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>13</td>
<td>TckF</td>
<td>CLKOUT fall time</td>
<td>—</td>
<td>15</td>
<td>30 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>13A</td>
<td></td>
<td>PIC16C84</td>
<td>—</td>
<td>15</td>
<td>100 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>14</td>
<td>TckL2ioV</td>
<td>CLKOUT ↓ to Port out valid</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5Tcy + 20 *</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>15</td>
<td>TioV2ckH</td>
<td>Port in valid before CLKOUT ↑</td>
<td>PIC16C84</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC16LC84</td>
<td>0.30Tcy + 30 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.30Tcy + 80 *</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>16</td>
<td>TckH2ioI</td>
<td>Port in hold after CLKOUT ↑</td>
<td>0 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>17</td>
<td>TosH2ioV</td>
<td>OSC1↑ (Q1 cycle) to Port out valid</td>
<td>PIC16C84</td>
<td>—</td>
<td>125 *</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC16LC84</td>
<td>—</td>
<td>—</td>
<td>250 *</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TosH2ioI</td>
<td>OSC1↑ (Q2 cycle) to Port input invalid</td>
<td>TBD</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I/O in hold time)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TioV2osH</td>
<td>Port input valid to OSC1↑</td>
<td>TBD</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I/O in setup time)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TioR</td>
<td>Port output rise time</td>
<td>PIC16C84</td>
<td>—</td>
<td>10</td>
<td>25 *</td>
<td>ns</td>
</tr>
<tr>
<td>20A</td>
<td></td>
<td>PIC16LC84</td>
<td>—</td>
<td>10</td>
<td>60 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>21</td>
<td>TioF</td>
<td>Port output fall time</td>
<td>PIC16C84</td>
<td>—</td>
<td>10</td>
<td>25 *</td>
<td>ns</td>
</tr>
<tr>
<td>21A</td>
<td></td>
<td>PIC16LC84</td>
<td>—</td>
<td>10</td>
<td>60 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>22</td>
<td>Tinp</td>
<td>INT pin high or low time</td>
<td>PIC16C84</td>
<td>20 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>22A</td>
<td></td>
<td>PIC16LC84</td>
<td>55 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>23</td>
<td>Trbp</td>
<td>RB7:RB4 change INT high or low time</td>
<td>PIC16C84</td>
<td>20 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>23A</td>
<td></td>
<td>PIC16LC84</td>
<td>55 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.
FIGURE 11-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 11-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>TmcL</td>
<td>MCLR Pulse Width (low)</td>
<td>350 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>2.0V ≤ VDD ≤ 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>3.0V ≤ VDD ≤ 6.0V</td>
</tr>
<tr>
<td>31</td>
<td>Twdt</td>
<td>Watchdog Timer Time-out Period (No Prescaler)</td>
<td>7 *</td>
<td>18</td>
<td>33 *</td>
<td>ms</td>
<td>VDD = 5V</td>
</tr>
<tr>
<td>32</td>
<td>Tost</td>
<td>Oscillation Start-up Timer Period</td>
<td>—</td>
<td>1024Tosc</td>
<td>—</td>
<td>ms</td>
<td>Tosc = OSC1 period</td>
</tr>
<tr>
<td>33</td>
<td>Tpwr</td>
<td>Power-up Timer Period</td>
<td>28 *</td>
<td>72</td>
<td>132 *</td>
<td>ms</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>34</td>
<td>Tioz</td>
<td>I/O Hi-impedance from MCLR Low or reset</td>
<td>—</td>
<td>—</td>
<td>100 *</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
FIGURE 11-6: TIMER0 CLOCK TIMINGS

![RA4/T0CKI](image)

TABLE 11-6: TIMER0 CLOCK REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>T0H</td>
<td>T0CKI High Pulse Width</td>
<td>No Prescaler</td>
<td>0.5Tcy + 20 *</td>
<td>— —</td>
<td>ns</td>
<td>2.0V ≤ VDD ≤ 3.0V 3.0V ≤ VDD ≤ 6.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>With Prescaler</td>
<td>50 *</td>
<td>30 *</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>41</td>
<td>T0L</td>
<td>T0CKI Low Pulse Width</td>
<td>No Prescaler</td>
<td>0.5Tcy + 20 *</td>
<td>— —</td>
<td>ns</td>
<td>2.0V ≤ VDD ≤ 3.0V 3.0V ≤ VDD ≤ 6.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>With Prescaler</td>
<td>50 *</td>
<td>20 *</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>42</td>
<td>T0P</td>
<td>T0CKI Period</td>
<td>Tcy + 40 * /N</td>
<td>— —</td>
<td>— —</td>
<td>ns</td>
<td>N = prescale value (2, 4, ..., 256)</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
12.0 DC & AC CHARACTERISTICS GRAPHS/TABLES FOR PIC16C84

The data graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented is outside specified operating range (e.g., outside specified V_{DD} range). This is for information only and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. “Typical” represents the mean of the distribution while ‘max’ or ‘Min’ represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

TABLE 12-1: RC OSCILLATOR FREQUENCIES

<table>
<thead>
<tr>
<th>Cext</th>
<th>Rext</th>
<th>F_{osc} @ 5V, 25°C</th>
<th>Average F_{osc} @ 5V, 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 pF</td>
<td>3.3k</td>
<td>4.68 MHz</td>
<td>± 27%</td>
</tr>
<tr>
<td></td>
<td>5.1k</td>
<td>3.94 MHz</td>
<td>± 25%</td>
</tr>
<tr>
<td></td>
<td>10k</td>
<td>2.34 MHz</td>
<td>± 29%</td>
</tr>
<tr>
<td></td>
<td>100k</td>
<td>250.16 kHz</td>
<td>± 33%</td>
</tr>
<tr>
<td>100 pF</td>
<td>3.3k</td>
<td>1.49 MHz</td>
<td>± 25%</td>
</tr>
<tr>
<td></td>
<td>5.1k</td>
<td>1.12 MHz</td>
<td>± 25%</td>
</tr>
<tr>
<td></td>
<td>10k</td>
<td>620.31 kHz</td>
<td>± 30%</td>
</tr>
<tr>
<td></td>
<td>100k</td>
<td>90.25 kHz</td>
<td>± 26%</td>
</tr>
<tr>
<td>300 pF</td>
<td>3.3k</td>
<td>524.24 kHz</td>
<td>± 28%</td>
</tr>
<tr>
<td></td>
<td>5.1k</td>
<td>415.52 kHz</td>
<td>± 30%</td>
</tr>
<tr>
<td></td>
<td>10k</td>
<td>270.33 kHz</td>
<td>± 26%</td>
</tr>
<tr>
<td></td>
<td>100k</td>
<td>25.37 kHz</td>
<td>± 25%</td>
</tr>
</tbody>
</table>

*Measured in PDIP Packages. The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value.
FIGURE 12-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

\[\text{Fosc (MHz)} \]

\[\text{VDD (Volts)} \]

- R = 3.3k
- R = 5k
- R = 10k
- R = 100k

Cext = 20 pF, T = 25°C
FIGURE 12-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 12-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD
FIGURE 12-5: TYPICAL IPD vs. VDD WATCHDOG DISABLED (25˚C)

FIGURE 12-6: TYPICAL IPD vs. VDD WATCHDOG ENABLED (25˚C)
* IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior.
FIGURE 12-9: \(V_{TH} \) (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. \(V_{DD} \)

Max (-40°C to +85°C)
Typ @ 25°C
Min (-40°C to +85°C)

FIGURE 12-10: \(V_{TH} \) (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) vs. \(V_{DD} \)
FIGURE 12-11: $V_{IH\text{, }MCLR\text{, }T0CKI\text{ and }OSC1\text{ (IN RC MODE)}}$ vs. V_{DD}

- $V_{IH\text{, }max\text{ (-40°C to +85°C)}}$
- $V_{IH\text{, typ (25°C)}}$
- $V_{IH\text{, min (-40°C to +85°C)}}$
- $V_{IL\text{, }max\text{ (-40°C to +85°C)}}$
- $V_{IL\text{, typ (25°C)}}$
- $V_{IL\text{, min (-40°C to +85°C)}}$
FIGURE 12-12: TYPICAL IDD vs. FREQ (EXT CLOCK, 25°C)

FIGURE 12-13: MAXIMUM IDD vs. FREQ (EXT CLOCK, -40°C TO +85°C)
FIGURE 12-14: WDT TIMER TIME-OUT PERIOD vs. VDD

FIGURE 12-15: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD
FIGURE 12-16: TRANSCONDUCTANCE (gm) OF LP OSCILLATOR vs. VDD

FIGURE 12-17: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD
FIGURE 12-18: I_{OH} vs. V_{OH}, $V_{DD} = 3V$

FIGURE 12-19: I_{OH} vs. V_{OH}, $V_{DD} = 5V$
FIGURE 12-20: I_{OL} vs. V_{OL}, $V_{DD} = 3V$

FIGURE 12-21: I_{OL} vs. V_{OL}, $V_{DD} = 5V$
TABLE 12-2: INPUT CAPACITANCE *

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Typical Capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18L PDIP</td>
</tr>
<tr>
<td>PORTA</td>
<td>5.0</td>
</tr>
<tr>
<td>PORTB</td>
<td>5.0</td>
</tr>
<tr>
<td>MCLR</td>
<td>17.0</td>
</tr>
<tr>
<td>OSC1/CLKIN</td>
<td>4.0</td>
</tr>
<tr>
<td>OSC2/CLKOUT</td>
<td>4.3</td>
</tr>
<tr>
<td>T0CKI</td>
<td>3.2</td>
</tr>
</tbody>
</table>

* All capacitance values are typical at 25°C. A part to part variation of ±25% (three standard deviations) should be taken into account.
13.0 ELECTRICAL CHARACTERISTICS FOR PIC16C83, PIC16CR83, PIC16C84A AND PIC16CR84

Absolute Maximum Ratings †

Ambient temperature under bias ... -55°C to +125°C

Voltage on any pin with respect to VSS (except VDD and MCLR) .. -0.6V to (VDD + 0.6V)

Voltage on VDD with respect to VSS ... 0 to +7.5V

Voltage on MCLR with respect to VSS (Note 2) .. 0 to +14V

Total power dissipation (Note 1) ... 800 mW

Maximum current out of VSS pin .. 150 mA

Maximum current into VDD pin .. 100 mA

Input clamp current, I_{IK} (V_I < 0 or V_I > VDD) ... ±20 mA

Output clamp current, I_{OK} (V_0 < 0 or V_0 > VDD) .. ±20 mA

Maximum output current sunk by any I/O pin ... 25 mA

Maximum output current sourced by any I/O pin .. 20 mA

Maximum current sunk by PORTA ... 80 mA

Maximum current sourced by PORTA ... 50 mA

Maximum current sunk by PORTB ... 150 mA

Maximum current sourced by PORTB .. 100 mA

Note 1: Power dissipation is calculated as follows:
\[P_{\text{dis}} = V_{DD} \times (I_{DD} - \sum I_{OH}) + \sum ((V_{DD} - V_{OH}) \times I_{OH}) + \sum (V_{OL} \times I_{OL}) \]

Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR pin rather than pulling this pin directly to VSS.

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
TABLE 13-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>Vcc: 4.0V to 6.0V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Vcc: 4.0V to 6.0V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Vcc: 2.0V to 6.0V</td>
<td>Vdd: 2.0V to 6.0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idd: 4.5 mA max. at 5.5V</td>
<td>Idd: 1.8 mA typ. at 5.5V</td>
<td>Idd: 4.5 mA max. at 5.5V</td>
<td>Idd: 1.8 mA typ. at 5.5V</td>
<td>Idd: 4.5 mA max. at 5.5V</td>
<td>Idd: 1.8 mA typ. at 5.5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IpD: 14 µA max. at 4V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 5.5V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 14 µA max. at 4V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 5.5V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 14 µA max. at 4V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 5.5V WDT dis Freq: 4.0 MHz max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XT</td>
<td>Vcc: 4.0V to 6.0V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Vcc: 4.0V to 6.0V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Vcc: 2.0V to 6.0V</td>
<td>Vdd: 2.0V to 6.0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idd: 4.5 mA max. at 5.5V</td>
<td>Idd: 1.8 mA typ. at 5.5V</td>
<td>Idd: 4.5 mA max. at 5.5V</td>
<td>Idd: 1.8 mA typ. at 5.5V</td>
<td>Idd: 4.5 mA max. at 5.5V</td>
<td>Idd: 1.8 mA typ. at 5.5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IpD: 14 µA max. at 4V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 5.5V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 14 µA max. at 4V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 5.5V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 14 µA max. at 4V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 5.5V WDT dis Freq: 4.0 MHz max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>Vcc: 4.5V to 5.5V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Vcc: 4.5V to 5.5V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Do not use in HS mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idd: 4.5 mA typ. at 5.5V</td>
<td>Idd: 10 mA max. at 5.5V typ.</td>
<td>Idd: 4.5 mA typ. at 5.5V</td>
<td>Idd: 10 mA max. at 5.5V typ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IpD: 1.0 µA typ. at 4.5V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 4.5V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 4.5V WDT dis Freq: 4.0 MHz max.</td>
<td>IpD: 1.0 µA typ. at 4.5V WDT dis Freq: 4.0 MHz max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>Vcc: 4.0V to 6.0V</td>
<td>Vdd: 4.5V to 5.5V</td>
<td>Do not use in LP mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idd: 35 µA typ. at 32 kHz, 3.0V</td>
<td>Idd: 32 µA max. at 32 kHz, 3.0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IpD: 0.6 µA typ. at 3.0V WDT dis Freq: 200 kHz max.</td>
<td>IpD: 7 µA max. at 2.0V WDT dis Freq: 200 kHz max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.
DC CHARACTERISTICS

PIC16C84A, PIC16C83 (Commercial, Industrial)
PIC16CR84, PIC16CR83 (Commercial, Industrial)

DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>VDD</td>
<td>Supply Voltage</td>
<td>4.0</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>XT, RC and LP osc configuration</td>
</tr>
<tr>
<td>D001A</td>
<td></td>
<td></td>
<td>4.5</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>HS osc configuration</td>
</tr>
<tr>
<td>D002</td>
<td>VDR</td>
<td>RAM Data Retention Voltage (Note 1)</td>
<td>1.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Device in SLEEP mode</td>
</tr>
<tr>
<td>D003</td>
<td>VPOR</td>
<td>VDD start voltage to ensure Power-on Reset</td>
<td>—</td>
<td>Vss</td>
<td>—</td>
<td>V</td>
<td>See section on Power-on Reset for details</td>
</tr>
<tr>
<td>D004</td>
<td>SVDD</td>
<td>VDD rise rate to ensure Power-on Reset</td>
<td>0.05*</td>
<td>—</td>
<td>—</td>
<td>V/µs</td>
<td>See section on Power-on Reset for details</td>
</tr>
<tr>
<td>D010</td>
<td>IDD</td>
<td>Supply Current (Note 2)</td>
<td>—</td>
<td>1.8</td>
<td>4.5</td>
<td>mA</td>
<td>RC and XT osc configuration (Note 4)</td>
</tr>
<tr>
<td>D010A</td>
<td></td>
<td></td>
<td>—</td>
<td>7.3</td>
<td>10</td>
<td>mA</td>
<td>Fosc = 4.0 MHz, VDD = 5.5V</td>
</tr>
<tr>
<td>D013</td>
<td></td>
<td></td>
<td>—</td>
<td>5</td>
<td>10</td>
<td>µA</td>
<td>FOSC = 10 MHz, VDD = 5.5V (During EEPROM programming)</td>
</tr>
<tr>
<td>D020</td>
<td>IPD</td>
<td>Power-down Current (Note 3)</td>
<td>—</td>
<td>7.0</td>
<td>28</td>
<td>µA</td>
<td>Vdd = 4.0V, WDT enabled, -40°C to +85°C</td>
</tr>
<tr>
<td>D021</td>
<td></td>
<td></td>
<td>—</td>
<td>1.0</td>
<td>14</td>
<td>µA</td>
<td>VDD = 4.0V, WDT disabled, -0°C to +70°C</td>
</tr>
<tr>
<td>D021A</td>
<td></td>
<td></td>
<td>—</td>
<td>1.0</td>
<td>16</td>
<td>µA</td>
<td>VDD = 4.0V, WDT disabled, -40°C to +85°C</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula: $I_R = VDD/2R_{ext}$ (mA) with Rext in kOhm.
DC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)
- **Operating temperature**:
 - TA: -40°C ≤ TA ≤ +85°C for industrial and
 - TA: 0°C ≤ TA ≤ +70°C for commercial

Parameters

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>VDD</td>
<td>Supply Voltage</td>
<td>2.0</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>XT, RC, and LP osc configuration</td>
</tr>
<tr>
<td>D002</td>
<td>VDR</td>
<td>RAM Data Retention Voltage (Note 1)</td>
<td>1.5 *</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Device in SLEEP mode</td>
</tr>
<tr>
<td>D003</td>
<td>VPOR</td>
<td>VDD start voltage to ensure Power-on Reset</td>
<td>—</td>
<td>VSS</td>
<td>—</td>
<td>V</td>
<td>See section on Power-on Reset for details</td>
</tr>
<tr>
<td>D004</td>
<td>SVDD</td>
<td>VDD rise rate to ensure Power-on Reset</td>
<td>0.05*</td>
<td>—</td>
<td>—</td>
<td>V/ms</td>
<td>See section on Power-on Reset for details</td>
</tr>
<tr>
<td>D010</td>
<td>IDD</td>
<td>Supply Current</td>
<td>—</td>
<td>1.8</td>
<td>4.5</td>
<td>mA</td>
<td>RC and XT osc configuration (Note 4)</td>
</tr>
<tr>
<td>D010A</td>
<td></td>
<td></td>
<td>—</td>
<td>7.3</td>
<td>10</td>
<td>mA</td>
<td>FOSC = 2.0 MHz, VDD = 5.5V</td>
</tr>
<tr>
<td>D014</td>
<td></td>
<td></td>
<td>—</td>
<td>15</td>
<td>32</td>
<td>μA</td>
<td>LP osc configuration</td>
</tr>
<tr>
<td>D020</td>
<td>IPD</td>
<td>Power-down Current</td>
<td>—</td>
<td>3.0</td>
<td>16</td>
<td>μA</td>
<td>VDD = 2.0V, WDT enabled, -40°C to +85°C</td>
</tr>
<tr>
<td>D021</td>
<td></td>
<td></td>
<td>—</td>
<td>0.4</td>
<td>7.0</td>
<td>μA</td>
<td>VDD = 2.0V, WDT disabled, 0°C to +70°C</td>
</tr>
<tr>
<td>D021A</td>
<td></td>
<td></td>
<td>—</td>
<td>0.3</td>
<td>9.0</td>
<td>μA</td>
<td>VDD = 2.0V, WDT disabled, -40°C to +85°C</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Notes
1. This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
2. The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
3. The test conditions for all IDD measurements in active operation mode are:
 - OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD, T0CKI = VDD, MCLR = VDD, WDT enabled/disabled as specified.
4. The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
5. For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula: \[I_R = \frac{V_{DD}}{2R_{ext}} \] (mA) with Rext in kOhm.

Note 1:
- Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
- The test conditions for all IDD measurements in active operation mode are:
 - OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD, T0CKI = VDD, MCLR = VDD, WDT enabled/disabled as specified.
- The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula: \[I_R = \frac{V_{DD}}{2R_{ext}} \] (mA) with Rext in kOhm.
DC CHARACTERISTICS

Applicable Devices
- PIC16C84A, PIC16C83 (Commercial, Industrial)
- PIC16CR84A, PIC16CR83 (Commercial, Industrial)
- PIC16LC84A, PIC16LC83 (Commercial, Industrial)
- PIC16LCR84, PIC16LCR83 (Commercial, Industrial)

DC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

- Operating temperature:
 - $-40°C \leq T_A \leq +85°C$ for industrial and
 - $0°C \leq T_A \leq +70°C$ for commercial

- Operating voltage V_{DD} range as described in DC spec Section 13-1 and Section 13-3

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D030</td>
<td>VIL</td>
<td>Input Low Voltage</td>
<td>Vss</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
<td>$4.5 \leq V_{DD} \leq 5.5$ V</td>
</tr>
<tr>
<td>D030</td>
<td></td>
<td>with TTL buffer</td>
<td>Vss</td>
<td>—</td>
<td>0.16VDD</td>
<td>V</td>
<td>entire range (Note 4)</td>
</tr>
<tr>
<td>D031</td>
<td></td>
<td>with Schmitt Trigger buffer</td>
<td>Vss</td>
<td>—</td>
<td>0.2VDD</td>
<td>V</td>
<td>entire range</td>
</tr>
<tr>
<td>D032</td>
<td>MCLR, RA4/T0CKI</td>
<td>Vss</td>
<td>—</td>
<td>0.2VDD</td>
<td>V</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>D033</td>
<td>OSC1 (XT, HS and LP modes)</td>
<td>Vss</td>
<td>—</td>
<td>0.3VDD</td>
<td>V</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>D034</td>
<td>OSC1 (RC mode)</td>
<td>Vss</td>
<td>—</td>
<td>0.4VDD</td>
<td>V</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D040</td>
<td>VIH</td>
<td>Input High Voltage</td>
<td>2.4</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>$4.5 \leq V_{DD} \leq 5.5$ V</td>
</tr>
<tr>
<td>D040A</td>
<td></td>
<td>with TTL buffer</td>
<td>0.48VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>entire range (Note 4)</td>
</tr>
<tr>
<td>D041</td>
<td></td>
<td>with Schmitt Trigger buffer</td>
<td>0.45VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>entire range</td>
</tr>
<tr>
<td>D042</td>
<td>MCLR, RA4/T0CKI (RC mode)</td>
<td>0.85VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>D043</td>
<td>OSC1 (XT, HS and LP modes)</td>
<td>0.7VDD</td>
<td>—</td>
<td>VDD</td>
<td>V</td>
<td>Note 1</td>
<td></td>
</tr>
<tr>
<td>D050</td>
<td>VHYS</td>
<td>Hysteresis of Schmitt Trigger inputs</td>
<td>TBD</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>D070</td>
<td>IPURB</td>
<td>PORTB weak pull-up current</td>
<td>50*</td>
<td>250*</td>
<td>400*</td>
<td>µA</td>
<td>$V_{DD} = 5.0$, $VPIN = V_S$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D060</td>
<td>IIL</td>
<td>Input Leakage Current</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
<td>$V_{SS} \leq VPIN \leq V_{DD}$, Pin at hi-impedance</td>
</tr>
<tr>
<td>D061</td>
<td>MCLR, RA4/T0CKI</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>µA</td>
<td>$V_{SS} \leq VPIN \leq V_{DD}$</td>
<td></td>
</tr>
<tr>
<td>D063</td>
<td>OSC1</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>µA</td>
<td>$V_{SS} \leq VPIN \leq V_{DD}$, XT, HS and LP osc configuration</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D080</td>
<td>VOL</td>
<td>Output Low Voltage</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
<td>$I_O = 8.5$ mA, $V_{DD} = 4.5$ V</td>
</tr>
<tr>
<td>D083</td>
<td>OSC2/CLKOUT</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>V</td>
<td>$I_O = 1.6$ mA, $V_{DD} = 4.5$ V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D090</td>
<td>VDH</td>
<td>Output High Voltage</td>
<td>VDD-0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_O = -3.0$ mA, $V_{DD} = 4.5$ V</td>
</tr>
<tr>
<td>D092</td>
<td>OSC2/CLKOUT</td>
<td>VDD-0.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_O = -1.3$ mA, $V_{DD} = 4.5$ V</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. Do not drive the PIC16C8X with an external clock while the device is in RC mode, otherwise chip damage may result.

Note 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

Note 3: Negative current is defined as coming out of the pin.

Note 4: The user may use better of the two specs.
13.4 DC CHARACTERISTICS: PIC16C84A, PIC16C83 (Commercial, Industrial)
PIC16CR84A, PIC16CR83 (Commercial, Industrial)
PIC16LC84A, PIC16C83 (Commercial, Industrial)
PIC16LCR84A, PIC16LCR83 (Commercial, Industrial)

Applicable Devices

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D100</td>
<td>C</td>
<td>Capacitive Loading Specs</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>pF</td>
<td>In XT, HS and LP modes when external clock is used to drive OSC1.</td>
</tr>
<tr>
<td>D101</td>
<td>C</td>
<td>All I/O pins and OSC2 (RC mode)</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>D120</td>
<td>E</td>
<td>Data EEPROM Memory Endurance</td>
<td>100,000</td>
<td>1,000,000</td>
<td>—</td>
<td>E/W</td>
<td>VMIN = Minimum operating voltage</td>
</tr>
<tr>
<td>D121</td>
<td>V</td>
<td>VDD for read/write</td>
<td>V_MIN</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D122</td>
<td>T</td>
<td>Erase/Write cycle time</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>D130</td>
<td>E</td>
<td>Program EEPROM Memory Endurance</td>
<td>100</td>
<td>1000</td>
<td>—</td>
<td>E/W</td>
<td>VMIN = Minimum operating voltage</td>
</tr>
<tr>
<td>D131</td>
<td>V</td>
<td>VDD for read</td>
<td>V_MIN</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D132</td>
<td>V</td>
<td>VDD for erase/write</td>
<td>4.5</td>
<td>5.5</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>D133</td>
<td>T</td>
<td>Erase/Write cycle time</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
TABLE 13-2: TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
2. TppS

<table>
<thead>
<tr>
<th>T</th>
<th>F</th>
<th>Frequency</th>
<th>T</th>
<th>Time</th>
</tr>
</thead>
</table>

Lowercase symbols (pp) and their meanings:
- ck: CLKOUT
- io: I/O port
- mc: MCLR

Uppercase symbols and their meanings:
- S: Frequency
- F: Fall
- H: High
- I: Invalid (Hi-impedance)
- L: Low
- P: Period
- R: Rise
- V: Valid
- Z: High Impedance

FIGURE 13-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.

FIGURE 13-2: LOAD CONDITIONS

Load Condition 1:
- RL = 464Ω
- CL = 50 pF for all pins except OSC2.
- 15 pF for OSC2 output.

Load Condition 2:
- Pin
- CL
- VSS
13.5 Timing Diagrams and Specifications for PIC16C83, PIC16CR83, PIC16C84A, and PIC16CR84

TABLE 13-3: EXTERNAL CLOCK TIMING REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>External CLkin Frequency (Note 1)</td>
<td>DC</td>
<td>—</td>
<td>2</td>
<td>MHz</td>
<td>XT, RC osc, PIC16LC8X-04, PIC16LCR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>XT, RC osc, PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>10</td>
<td>MHz</td>
<td>HS osc, PIC16C8X-10, PIC16CR8X-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>200</td>
<td>kHz</td>
<td>LP osc, PIC16LC8X-04, PIC16LCR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oscillator Frequency (Note 1)</td>
<td>DC</td>
<td>—</td>
<td>2</td>
<td>MHz</td>
<td>RC osc, PIC16LC8X-04, PIC16LCR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>RC osc, PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>—</td>
<td>2</td>
<td>MHz</td>
<td>XT osc, PIC16LC8X-04, PIC16LCR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>—</td>
<td>4</td>
<td>MHz</td>
<td>XT osc, PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>—</td>
<td>10</td>
<td>MHz</td>
<td>HS osc, PIC16C8X-10, PIC16CR8X-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DC</td>
<td>—</td>
<td>200</td>
<td>kHz</td>
<td>LP osc, PIC16LC8X-04, PIC16LCR8X-04</td>
</tr>
</tbody>
</table>

† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (Tcy) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied to the OSC1 pin.

When an external clock input is used, the "Max." cycle time limit is “DC” (no clock) for all devices.
TABLE 13-3: EXTERNAL CLOCK TIMING REQUIREMENTS (CONTINUED)

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tosc</td>
<td>External CLKIN Period (Note 1)</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT, RC osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT, RC osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oscillator Period (Note 1)</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>RC osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>—</td>
<td>10,000</td>
<td>ns</td>
<td>XT osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>—</td>
<td>10,000</td>
<td>ns</td>
<td>XT osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>—</td>
<td>1,000</td>
<td>ns</td>
<td>HS osc PIC16C8X-10, PIC16CR8X-10</td>
</tr>
<tr>
<td>2</td>
<td>TCY</td>
<td>Instruction Cycle Time (Note 1)</td>
<td>0.4</td>
<td>4/Fosc</td>
<td>DC</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TosL, TosH</td>
<td>Clock in (OSC1) High or Low Time</td>
<td>60</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td>LP osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>—</td>
<td>—</td>
<td>µs</td>
<td>LP osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td>4</td>
<td>TosR, TosF</td>
<td>Clock in (OSC1) Rise or Fall Time</td>
<td>25</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>XT osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>LP osc PIC16C8X-04, PIC16CR8X-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>HS osc PIC16C8X-10, PIC16CR8X-10</td>
</tr>
</tbody>
</table>

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
FIGURE 13-4: CLKOUT AND I/O TIMING

![Diagram of CLKOUT and I/O timing](image)

Note: All tests must be done with specified capacitive loads (Figure 13-2) 50 pF on I/O pins and CLKOUT.

TABLE 13-4: CLKOUT AND I/O TIMING REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>TosH2ckL</td>
<td>OSC1↑ to CLKOUT↓ PIC16C8X</td>
<td>15</td>
<td></td>
<td>30 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>10A</td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TosH2ckH</td>
<td>OSC1↑ to CLKOUT↑ PIC16C8X</td>
<td>15</td>
<td></td>
<td>30 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>11A</td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TckR</td>
<td>CLKOUT rise time PIC16C8X</td>
<td>15</td>
<td></td>
<td>30 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>12A</td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TckF</td>
<td>CLKOUT fall time PIC16C8X</td>
<td>15</td>
<td></td>
<td>30 *</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td>13A</td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TckL2ioV</td>
<td>CLKOUT ↓ to Port out valid ——</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note 1</td>
</tr>
<tr>
<td>15</td>
<td>TioV2ckH</td>
<td>Port in valid before CLKOUT↑ PIC16C8X</td>
<td>0.30Tcy + 30 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>TckH2ioI</td>
<td>Port in hold after CLKOUT↑ ——</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note 1</td>
</tr>
<tr>
<td>17</td>
<td>TosH2ioV</td>
<td>OSC1↑ (Q1 cycle) to Port out valid PIC16C8X</td>
<td>—</td>
<td>—</td>
<td>125 *</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TosHioH</td>
<td>OSC1↑ (Q2 cycle) to Port input invalid PIC16C8X</td>
<td>—</td>
<td>—</td>
<td>250 *</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port in hold time (I/O in hold time)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TioV2oioH</td>
<td>Port input valid to OSC1↑ ——</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port in setup time (I/O in setup time)</td>
<td></td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TioR</td>
<td>Port output rise time PIC16C8X</td>
<td>10</td>
<td></td>
<td>25 *</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>20A</td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>TioF</td>
<td>Port output fall time PIC16C8X</td>
<td>10</td>
<td></td>
<td>25 *</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>21A</td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Tinp</td>
<td>INT pin high or low time PIC16C8X</td>
<td>20 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>22A</td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Trbp</td>
<td>RB7:RB4 change INT high or low time PIC16C8X</td>
<td>TosC §</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>23A</td>
<td></td>
<td>PIC16LC8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
§ By design

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TosC.
FIGURE 13-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 13-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>TmCL</td>
<td>MCLR Pulse Width (low)</td>
<td>1000 *</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>2.0V ≤ VDD ≤ 6.0V</td>
</tr>
<tr>
<td>31</td>
<td>Twdt</td>
<td>Watchdog Timer Time-out Period (No Prescaler)</td>
<td>7 *</td>
<td>18</td>
<td>33 *</td>
<td>ms</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>32</td>
<td>Tost</td>
<td>Oscillation Start-up Timer Period</td>
<td>1024Tosc</td>
<td>ms</td>
<td>Tosc = OSC1 period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Tpwrt</td>
<td>Power-up Timer Period</td>
<td>28 *</td>
<td>72</td>
<td>132 *</td>
<td>ms</td>
<td>VDD = 5.0V</td>
</tr>
<tr>
<td>34</td>
<td>TIOZ</td>
<td>I/O Hi-impedance from MCLR Low or reset</td>
<td>—</td>
<td>—</td>
<td>100 *</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
TABLE 13-6: TIMER0 CLOCK REQUIREMENTS

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Sym</th>
<th>Characteristic</th>
<th>No Prescaler</th>
<th>With Prescaler</th>
<th>Min</th>
<th>Typ†</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>T0H</td>
<td>T0CKI High Pulse Width</td>
<td>0.5T_{CY} + 20 *</td>
<td>ns</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>2.0V ≤ V_{DD} ≤ 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 *</td>
<td>ns</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>3.0V ≤ V_{DD} ≤ 6.0V</td>
</tr>
<tr>
<td>41</td>
<td>T0L</td>
<td>T0CKI Low Pulse Width</td>
<td>0.5T_{CY} + 20 *</td>
<td>ns</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>2.0V ≤ V_{DD} ≤ 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 *</td>
<td>ns</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>3.0V ≤ V_{DD} ≤ 6.0V</td>
</tr>
<tr>
<td>42</td>
<td>T0P</td>
<td>T0CKI Period</td>
<td>T_{CY} + 40 *</td>
<td>ns</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td>N = prescale value (2, 4, ..., 256)</td>
</tr>
</tbody>
</table>

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
14.0 DC & AC CHARACTERISTICS GRAPHS/TABLES FOR PIC16C83, PIC16CR83, PIC16C84A, AND PIC16CR84

Device Characteristics Not Available at This Time
**TABLE 14-1: INPUT CAPACITANCE * **

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Typical Capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18L PDIP</td>
</tr>
<tr>
<td>PORTA</td>
<td>5.0</td>
</tr>
<tr>
<td>PORTB</td>
<td>5.0</td>
</tr>
<tr>
<td>MCLR</td>
<td>17.0</td>
</tr>
<tr>
<td>OSC1/CLKIN</td>
<td>4.0</td>
</tr>
<tr>
<td>OSC2/CLKOUT</td>
<td>4.3</td>
</tr>
<tr>
<td>T0CKI</td>
<td>3.2</td>
</tr>
</tbody>
</table>

* All capacitance values are typical at 25°C. A part to part variation of ±25% (three standard deviations) should be taken into account.
15.0 PACKAGING INFORMATION

15.1 18-Lead Plastic Dual In-line (300 mil)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>A</td>
<td>–</td>
<td>0.160</td>
</tr>
<tr>
<td>A1</td>
<td>0.381 – 4.064</td>
<td>0.015 – 0.160</td>
</tr>
<tr>
<td>A2</td>
<td>3.048 – 3.810</td>
<td>0.120 – 0.150</td>
</tr>
<tr>
<td>B</td>
<td>0.355 – 0.559</td>
<td>0.014 – 0.022</td>
</tr>
<tr>
<td>B1</td>
<td>1.524 – 1.524</td>
<td>0.060 – 0.060</td>
</tr>
<tr>
<td>C</td>
<td>0.203 – 0.381</td>
<td>0.008 – 0.015</td>
</tr>
<tr>
<td>D</td>
<td>22.479 – 23.495</td>
<td>0.885 – 0.925</td>
</tr>
<tr>
<td>D1</td>
<td>20.320 – 20.320</td>
<td>0.800 – 0.800</td>
</tr>
<tr>
<td>E</td>
<td>7.620 – 8.255</td>
<td>0.300 – 0.325</td>
</tr>
<tr>
<td>E1</td>
<td>6.096 – 7.112</td>
<td>0.240 – 0.280</td>
</tr>
<tr>
<td>e1</td>
<td>2.489 – 2.591</td>
<td>0.098 – 0.102</td>
</tr>
<tr>
<td>eA</td>
<td>7.620 – 7.620</td>
<td>0.300 – 0.300</td>
</tr>
<tr>
<td>eB</td>
<td>7.874 – 9.906</td>
<td>0.310 – 0.390</td>
</tr>
<tr>
<td>L</td>
<td>3.048 – 3.556</td>
<td>0.120 – 0.140</td>
</tr>
<tr>
<td>N</td>
<td>18 – 18</td>
<td>18 – 18</td>
</tr>
<tr>
<td>S</td>
<td>0.889 – –</td>
<td>0.035 – –</td>
</tr>
<tr>
<td>S1</td>
<td>0.127 – –</td>
<td>0.005 – –</td>
</tr>
</tbody>
</table>
15.2 18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
<td>8°</td>
</tr>
<tr>
<td>A</td>
<td>2.362</td>
<td>2.642</td>
</tr>
<tr>
<td>A1</td>
<td>0.101</td>
<td>0.300</td>
</tr>
<tr>
<td>B</td>
<td>0.355</td>
<td>0.483</td>
</tr>
<tr>
<td>C</td>
<td>0.241</td>
<td>0.318</td>
</tr>
<tr>
<td>D</td>
<td>11.353</td>
<td>11.735</td>
</tr>
<tr>
<td>E</td>
<td>7.416</td>
<td>7.595</td>
</tr>
<tr>
<td>e</td>
<td>1.270</td>
<td>1.270</td>
</tr>
<tr>
<td>H</td>
<td>10.007</td>
<td>10.643</td>
</tr>
<tr>
<td>h</td>
<td>0.381</td>
<td>0.762</td>
</tr>
<tr>
<td>L</td>
<td>0.406</td>
<td>1.143</td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>CP</td>
<td>–</td>
<td>0.102</td>
</tr>
</tbody>
</table>

Package Group: Plastic SOIC (SO)
15.3 **Package Marking Information**

Legend:
- MM...M Microchip part number information
- XX...X Customer specific information*
- AA Year code (last two digits of calendar year)
- BB Week code (week of January 1 is week '01')
- C Facility code of the plant at which wafer is manufactured
 - C = Chandler, Arizona, U.S.A.,
 - S = Tempe, Arizona, U.S.A.
- D Mask revision number
- E Assembly code of the plant or country of origin in which part was assembled

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.
APPENDIX A: CHANGES

The following is the list of modifications over the PIC16C5X microcontroller family:

1. Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and the register file (128 bytes now versus 32 bytes before).

2. A PC latch register (PCLATH) is added to handle program memory paging. PA2, PA1 and PA0 bits are removed from the status register and placed in the option register.

3. Data memory paging is redefined slightly. The STATUS register is modified.

4. Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions, TRIS and OPTION, are being phased out although they are kept for compatibility with PIC16C5X.

5. OPTION and TRIS registers are made addressable.

6. Interrupt capability is added. Interrupt vector is at 0004h.

7. Stack size is increased to 8 deep.

8. Reset vector is changed to 0000h.

9. Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.

10. Wake up from SLEEP through interrupt is added.

11. Two separate timers, the Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.

12. PORTB has weak pull-ups and interrupt on change features.

13. T0CKI pin is also a port pin (RA4/T0CKI).

14. FSR is a full 8-bit register.

15. “In system programming” is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16C8X, the user should take the following steps:

1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.

2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.

4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.

5. Change reset vector to 0000h.
APPENDIX C: WHAT’S NEW
Here is an overview list of new features:

- Added descriptions and information for the PIC16C84A, PIC16CR84, PIC16C83 and PIC16CR83 devices.

APPENDIX D: WHAT’S CHANGED
The following lists the things that have changed:

1. Section 7.1 no longer says that the upper two bits of EEADR are not address decoded. These two bits are decoded, even when there is no data EEPROM at that location.
2. Changed the format of the Register Definition Figures to be consistent with other new data sheets.
3. Added parameter numbers to DC specs.
4. Added description of MPLAB development tool software.
5. Added new probes in Probe Specification table.
6. Updated device family tables.
APPENDIX E: PIC16C84
CONVERSION
CONSIDERATIONS

This appendix discusses some of the issues that you may encounter as you convert your design from a PIC16C84 to any of the newly introduced devices. These new devices are:

• PIC16C83
• PIC16CR83
• PIC16C84A
• PIC16CR84

Some of the issues that may be encountered are:

1. The polarity of the PWRTE configuration bit has been reversed. Ensure that the programmer has this bit correctly set before programming.
2. The PIC16C84A and PIC16CR84 have larger RAM sizes. Ensure that this does not cause an issue with your program.
3. The MCLR pin now has an on-chip filter. The input signal on the MCLR pin will require a longer low pulse to generate an interrupt.
4. Many electrical specifications have been improved. Compare the electrical specifications of the two devices to ensure that this will not cause a compatibility issue.
AMERICAS

Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200 Fax: 602 786-7277
Technical Support: 602 786-7627
Web: http://www.mchp.com/microchip

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770 640-0034 Fax: 770 640-0307

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508 480-9990 Fax: 508 480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071 Fax: 708 285-0075

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75248-8809
Tel: 214 991-7177 Fax: 214 991-8588

Dayton
Microchip Technology Inc.
35 Rockridge Road
Englewood, OH 45322
Tel: 513 832-2543 Fax: 513 832-2841

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA 92715
Tel: 714 263-1888 Fax: 714 263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335

AMERICAS (continued)

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC

Hong Kong
Microchip Technology
Unit No. 3002-3004, Tower 1
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200 Fax: 852 2 401 3431

Korea
Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200 Fax: 82 2 558 5934

Singapore
Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 189980
Tel: 65 334 8870 Fax: 65 334 8850

Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166 Fax: 81 45 471 6122

EUROPE

United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 0 1628 851077 Fax: 44 0 1628 850259

France
Arizona Microchip Technology SARL
2 Rue du Buisson aux Fraises
91300 Massy - France
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Pegaso Ingresso No. 2
Via Paracelso 23, 20041
Agrate Brianza (MI) Italy
Tel: 39 039 689 9939 Fax: 39 039 689 9883

All rights reserved. © 1995, Microchip Technology Incorporated, USA.